

Tampereen teknillinen yliopisto. Julkaisu 1015
Tampere University of Technology. Publication 1015

Timo Aho

Steps on Multi-Target Prediction and Adaptability to
Dynamic Input

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 27th of January 2012, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2012

ISBN 978-952-15-2725-8
ISSN 1459-2045

Abstract

How should we react to dynamically changing inputs in various areas of com-
puter science? This is one of the main questions we discuss in this thesis. The
problem is present both in machine learning environment coping with massive
amount of data available today and on the low level programming of computers.

One of the hot topics currently in machine learning are so called ensemble
methods. An ensemble model is a collection of multiple divergent, often simple,
base models. The variance of base models has been shown to give clear benefit
to the predictive power over using a single model. Not surprisingly, ensemble
methods also give new possibilities for coping with dynamic online inputs; we
can simply reweight the base models to adapt.

However, in this thesis we are especially interested in ensemble methods in
a specific framework. In many practical problems, we have multiple related at-
tributes that need to be predicted. For example, predicting the growth of flora
or biological composition of water are tasks that can be presented with multi-
ple attributes that clearly relate to each other. Recently there has been some
progress on methods that gain both smaller and more accurate overall models
by making use of relations between the predicted attributes. In this thesis, we
show that we can achieve both small and accurate models with a rule based
ensemble method Fire. The method is extensively evaluated experimentally.

We also pull some strings together by showing how similar problems have
been solved in separate areas of computer science. In machine learning, the
problem of dynamically changing input has been studied under a term of concept
drift. Similarly in algorithm and data structure analysis a notion of locality of
reference has been present for long. We introduce a general framework that
covers both of the problems and briefly go through the work done on both of
the areas. We hope that by giving pointers to a bridge over the gap between
the fields, researchers in both areas could be able to pick up some fruits on the
other side.

ii Abstract

Preface

My work on this thesis has been supported in many ways and by many people.
First of all I acknowledge the guidance and advice of my supervisor Prof. Tapio
Elomaa at Tampere University of Technology (TUT). In addition, during my
visit to Jožef Stefan Institute (JSI), Slovenia I got invaluable supervising from
Prof. Sašo Džeroski. I also want to thank the opponent Juho Rousu and the
thesis reviewers Prof. Hendrik Blockeel and Tapio Pahikkala for insightful and
encouraging comments.

I am also very grateful for the help and support offered by my co-authors and
colleagues at TUT and JSI. I want to especially thank Jussi Kujala, Bernard
Ženko and Martin Žnidaršič for all kind of supporting discussions. Moreover,
I want to thank Janne Lautamäki, Henri Hansen, Panče Panov, Prof. Tommi
Mikkonen, my brother Eero and many others for similar reasons.

I am deeply indebted to Kirsti and Sami for help I did not consider possible.
Finally, I thank my dear wife Leena and our lovely daughters Aleksandra, Sonja
and Nadja for giving meaning to all this.

Timo Aho, 15.12.2011, Tampere, Finland

Dedicated to my children, and to the child.

χαρις τω θεω επι τη ανεκδιηγητω αυτoυ δωρεα

iv Preface

Some Further Acknowledgments

The scientific work that led to this Ph.D. thesis was primarily supported by
Tampere Doctoral Programme in Information Science and Engineering (TISE)
and multiple Academy of Finland projects: Intelligent Online Data Structures
(INTENTS), Approximation and Learning Algorithms (ALEA) and Reactive
learning and mining (REALM). Additionally Department of Software Systems
in Tampere University of Technology helped in economic and practical ways.

Additional funding came from smaller scholarships by following instances:
Finnish Foundation for Technology Promotion, Tampere University of Tech-
nology Grant for Scientific Visit, Industrial Research Fund at the Tampere
University of Technology—Tuula and Yrjö Neuvo Foundation, Ulla Tuominen
Foundation and Nokia Foundation.

Contents

Abstract i

Preface iii

Contents v

List of Publications vii

1 Introduction 1

1.1 The Structure of the Thesis . 2

1.2 Summary of the Main Contribution 4

2 Background 7

2.1 Areas of Machine Learning . 7

2.1.1 Error and Loss Functions 10

2.1.2 Multi-Target Loss . 12

2.1.3 Model Families for Machine Learning 14

2.2 Dynamic Input . 16

2.2.1 Concept Drift in Online Learning 16

2.2.2 Locality of Reference on Data Structures 17

3 Regularization in Convex Optimization 19

3.1 Regularization . 20

3.2 Gradient Directed Optimization 22

3.3 Efficient Regularization in Support Vector Machines 24

3.3.1 Background . 24

3.3.2 Reweighting Ridge Regularized SVM 25

vi Contents

4 Rule Based Ensembles 27
4.1 On the Background of the Rule Ensembles 27
4.2 Rule Ensembles in Single Target Regression 28
4.3 Learning Rule Based Ensembles for Multi-Target Regression . . . 32

4.3.1 Generation of Base Models 34
4.3.2 Optional Linear Terms . 37
4.3.3 Gradient Directed Weight Optimization 38

4.4 Empirical Evaluation . 41
4.4.1 Experimental Setting . 41
4.4.2 Results . 44
4.4.3 Analysis of Normalization and the Use of Linear Terms . 51

4.5 Conclusions on the Multi-Target Rule Ensemble Method 55

5 Binary Search Trees in Online Context 57
5.1 Splay Trees in Theory . 58
5.2 Practical Efficiency of Splay Trees 60
5.3 Conditional Adaptation of a BST 62
5.4 A Dynamic Version of Wsplay 63

6 Working Sets as Drifting Concepts 67
6.1 Working Sets and Locality Phases 67
6.2 Concept Drift . 69
6.3 The Simple Generalized Problem 71

6.3.1 Relation to LR and CD 72
6.3.2 More Previous Work on the Problem 73

6.4 Further Generalizations . 77
6.5 On Locality of Reference and Drifting Concepts 78

7 Conclusions 81

Bibliography 83

List of Publications

This thesis is a compound of the following publications. The publications are
referred to in text with Roman numerals [I]–[V]. The permissions of the copy-
right holders of the original publications to reprint them in this thesis are hereby
acknowledged.

[I] Jussi Kujala, Timo Aho, and Tapio Elomaa. A walk from 2-norm SVM to
1-norm SVM. In Wei Wang, Hillol Kargupta, Sanjay Ranka, Philip S. Yu,
and Xindong Wu, editors, Proceedings of the Ninth International Confer-
ence on Data Mining (ICDM 2009), pages 836–841, 2009. IEEE Computer
Society, Los Alamitos, CA.

[II] Timo Aho, Bernard Ženko, and Sašo Džeroski. Rule ensembles for multi-
target regression. In Wei Wang, Hillol Kargupta, Sanjay Ranka, Philip S.
Yu, and Xindong Wu, editors, Proceedings of the Ninth International Con-
ference on Data Mining (ICDM 2009), pages 21–30, 2009. IEEE Com-
puter Society, Los Alamitos, CA.

[III] Timo Aho, Bernard Ženko, Sašo Džeroski, and Tapio Elomaa. Learning
Multi-Target Regression with Rule Ensembles. Technical Report 18, De-
partment of Software Systems, Tampere University of Technology, Tam-
pere, Finland, 2011.

[IV] Timo Aho, Tapio Elomaa, and Jussi Kujala. Reducing splaying by tak-
ing advantage of working sets. In Catherine C. McGeoch, editor, Pro-
ceedings of the Seventh International Workshop on Experimental Algo-
rithms (WEA 2008), volume 5038 of LNCS, pages 1–13, 2008. Springer,
Berlin/Heidelberg, Germany.

viii List of Publications

[V] Timo Aho, Tapio Elomaa, and Jussi Kujala. Unsupervised classifier se-
lection based on two-sample test. In Jean-François Boulicaut, Michael R.
Berthold, and Tamás Horváth, editors, Proceedings of the 11th Interna-
tional Conference on Discovery Science (DS 2008), volume 5255 of LNAI,
pages 28–39, 2008. Springer, Berlin/Heidelberg, Germany.

Chapter 1

Introduction

An often repeated slogan in computer science community is the increased volume
of information in multiple areas of life. For example, the amount of network
traffic and the number of computers, web pages, IP traffic, published scientific
papers, news reports, mobile network devices has been growing acceleratingly.
In many cases, it is not possible to go through all the data manually and we,
hence, need automated services that compress out the essential information.

One of the research areas to find out meaningful patterns in an ocean of
data is machine learning. Originally, the idea of machine learning was to au-
tomatically create rules for the intelligent behavior of algorithms. However,
nowadays machine learning is an umbrella term consisting of varying kinds of
methods. One of its most studied subareas is predictive learning on which we
mostly concentrate in this thesis.

In addition to learning, we are studying a separate but related area of com-
puter science: adaptive, or self-adjusting, data structures. We now illustrate the
content of both the areas with an example from mining industry. Assume we
are given a bunch of data which is represented by an ore block. We want to
extract some information, precious minerals, out of it.

With the predictive machine learning methods, we aim to figure out the
information based on the observable nature of the data. That is, by detecting
the mineral veins on the surface of the ore we predict if the block is rich enough
for further processing. The reasoning is based on our prior deep and thorough
analysis of similar ore blocks.

On the other hand, in the adaptive online data structure framework we
are interested in somewhat different things. For instance, we want to sort and

2 Chapter 1. Introduction

store the ore blocks based on their most common material. Thus, we can later
easily get the blocks that have a lot platinum. In an online environment, we do
not specifically know the ore usage beforehand. Instead, the decision of needed
materials is made simultaneously with mining. Thus, we need adaptive solutions
to keep the storage in good order in all situations.

1.1 The Structure of the Thesis

As mentioned, in this thesis we concentrate mostly on some predictive machine
learning methods and adaptive online data structures. We start the thesis in
Chapter 2 by introducing the basic terms of the areas.

In predictive learning, we are trying to predict some unknown attributes
for new data instances based on our prior knowledge. In our quest for solving
learning problems, we have a couple of subtasks: for example, we have to choose
a suitable method, its parameters and make some more implementation level
choices like how possible optimization is executed. All this affects the type of
resulting model, its accuracy and understandability.

In fact, in addition to predictions, we can often use the learned model itself
as a source of information. Nevertheless, to gain accurate predictions the model
has to find and compress out some essential relationships inside the data. Thus,
the aim in learning can be two-fold: predictive accuracy and presentation of
complex relationship information. Unfortunately, two aims seem often to be
contradictory. The most accurate predictive models tend to be quite complex
and not easily presentable to a human reader.

Because of this, we have to choose our method carefully based on our needs.
One of the modern accurate approaches is the so-called support vector machine
(SVM) [Vapnik, 2000]. It is based on finding a maximal margin linear function
between two separate sets in some carefully chosen space. SVM is a good exam-
ple for case, where study of different optimization types gives still fruitful results
[e.g., Chapelle, 2007; Hsieh et al., 2008; Lin et al., 2007; Masnadi-Shirazi and
Vasconcelos, 2010]. In addition to efficiency, we are interested in the properties
of the resulting model. One way to affect the behavior and size of the model is
to choose the regularization of optimized function. In Chapter 3 we present, our
study on creating more static, and thus possibly more reliable models without
losing in efficiency. More precisely, we study a technique of getting approxi-
mately L1 regularized results by running efficient L2 regularized SVM a couple
of times in a row.

1.1. The Structure of the Thesis 3

Even small SVM models are usually considered quite unreadable for a lay-
man. Thus, if we want to base our decision making on the information collected
by a machine learning method, SVM is not usually the right choice. Fortunately,
we have other techniques for creating more understandable models. Decision
rule sets are commonly considered one of the most interpretable ones. However,
the traditional methods leave some hope for accuracy. Nevertheless, more accu-
rate versions called rule ensemble methods have been presented [Dembczyński
et al., 2008b; Friedman and Popescu, 2005, 2008]. In Chapter 4 we introduce
and evaluate our rule ensembles method which is applicable to multi-target re-
gression problems. That is, we are simultaneously predicting multiple numeric
values instead of the traditional single one.

In machine learning the used computational time is not irrelevant. However,
in the area of data structures the problem has been even more present for a long
time. This is stressed when the amount of information is vast in comparison with
the time we have for processing it. For example, in sublinear time algorithms we
are not touching all the data when it is processed. More generally we often can
not go through all the past data when a new piece of information is achieved.
In our mining example it is clear that handling all the previous ore blocks when
storing a new one is out of question. There are plenty of frameworks for studying
this kind of situation, where data is inserted and accessed piece by piece. This
is different from the traditional offline framework where we have all the material
available from the beginning.

One of the older frameworks, called online algorithms [Albers, 2006], limits
the time usage to linear. This means that we should not use more than constant
time processing each of the data units. Or, better yet, we should touch each
unit only once during our scan. However, in the newer data stream framework
we are aiming for even sublinear time and storage usage [Muthukrishnan, 2005].

If the data is achieved in online fashion, the distribution of the data may
change during the progress. This happens even if the problem we are trying to
solve stays intact. This change may happen either abruptly or gradually. In our
mining example this could mean reaching a new rock layer in mining or slow
change in ore composition.

In the area of algorithms and data structures we call this change with terms
like locality of reference or appearance of working sets [Denning, 2005]. In
solving even the basic problems like data storage, searching or sorting efficiently,
it could benefit us to notice the existence of this phenomenon. That is, we
should realize that our model of the incoming distribution is not perfect forever
and some online adaptivity to input is needed. In our example it is clear that
detecting an increase in amount of platinum concentrated blocks allows us to

4 Chapter 1. Introduction

sort them out more efficiently. Also it is natural that all the stored platinum ore
blocks are used at once and thus they define a working set. In Chapter 5, we
present our binary search tree algorithm that is designed to cope with occurring
working sets.

A similar phenomenon has been detected in machine learning. Here we are
talking about concept drift [Tsymbal, 2004]. In this case, the phenomenon may
be even more important to notice because instead of just slowing down the
process, failure leads to the decay of the current model. This, on the other
hand, means we are failing in our both predictive learning aims. We would find
ourselves making decisions based on outdated data. If we do not notice the
concentration of mined ore changing, it may be very disastrous for our search
for economically interesting materials. The analogy between concept drift and
locality of reference is an interesting problem in its own right. We cover the
similarities and study made in the areas in Chapter 6.

Finally, we end with some concluding remarks and future work ideas.

1.2 Summary of the Main Contribution

In short, the main contribution of this thesis can be listed as follows:

• In [I] we inspect theoretically and experimentally a previously known
method for simulating L1 regularization with clearly more efficient L2 reg-
ularization in case of support vector machines. We also give convergence
proofs for the method. This work is also examined briefly in Chapter 3.

• In [II, III] and in Chapter 4 we develop and extensively experimentally
evaluate a novel rule ensemble algorithm Fire which is applied to pre-
dicting simultaneously multiple target attributes.

• We present an adaptive binary search tree Wsplay in [IV]. The algorithm
is developed to cope with and adapt to online input where the dynamically
changing locality of reference occurs. The work is also narrowly touched
in Chapter 5.

• On the other hand, in Chapter 6 we examine the similarities of concept
drift and locality of reference. In a survey like manner, we show that lots
of common work has been done in these completely distinct areas.

1.2. Summary of the Main Contribution 5

• Finally, [V] introduces a metric based method for weighting or selecting
machine learning predictive models in a collection. The metric is computed
on features gathered during the training phases of models. In some often
used cases, e.g. by using polynomial or Gaussian kernels, the weighting can
even be approximated much more efficiently than the traditional method.
The publication is covered in Chapter 6.

In publications [II, III, IV] and [V] the author gave most of the contribution.
However, in [I] the author had mostly a supportive role.

6 Chapter 1. Introduction

Chapter 2

Background

In this chapter, we go through some background in the two areas mentioned in
the first chapter.

2.1 Areas of Machine Learning

Machine learning is an umbrella term covering techniques for distinct tasks. We
now go through a common categorization for it.

In this thesis, we are mainly considering supervised learning . In this case,
our task is to predict a vector valued function or probability distribution for
T target attributes y = (y1, y2, . . . , yT)T ∈ Y based on known vector x =
(x1, x2, . . . , xK)T ∈ X of K descriptive attributes. The process is divided
in two separate phases. In the training phase, we are given a set of training
examples E of the form (x,y). Our predictive model is created based on these
examples. After this, in the test phase we are given only the descriptive vector
x. Our task is to choose an answer that best estimates and generalizes the
original data set E distribution. For instance in regression estimation our target
attribute prediction ŷ is a function of the descriptive vector ŷ = f(x). In the
traditional supervised learning environment the target vector y is scalar and is
often referred to as a label .

Slightly more formally, Vapnik [1999] defines supervised learning as follows.

Problem Definition 1. Supervised learning has three components:

1. random vectors x drawn independently from a (for the time being) fixed,
but unknown distribution D(x),

8 Chapter 2. Background

2. a (hypothetic) supervisor returning target vector y for every x, according
to a (for time being) fixed, but unknown conditional distribution D(y,x),
and

3. a set of model functions f(x;β), where β = (β1, β2, . . .) is a meta-
parameter that identifies the function in the family.

Now our task is to find β so that function f(x;β) approximates the supervisor’s
answers as well as possible. This is done by minimizing the error estimate for
the function f over some test set Etest ⊆ X× Y:

ERR(β,Etest) =
1

|Etest|
∑

(x,y)∈Etest

L(y,f(x;β)). (2.1)

Here |E| is the size of set E and L is a preselected loss function. Low loss
function values imply a better model.

Sometimes the distributions D(x) and D(y,x) may be dynamic in nature.
We will cover this topic later in Section 2.2.1 and Chapter 6. Moreover, the
choice of loss function depends on our goal. Some often used loss functions are
introduced in Section 2.1.1.

So, we now have the problem definition: we have to find a good β for some
family of functions. How is this done in practice? First of all, we have to
choose a suitable family of functions based on the data and especially on the
need we have on the task. There are many function family alternatives with
different properties like accuracy, efficiency, simplicity etc. depending on the
problem at hand. After that, we select a loss function and use some heuristic or
optimization method to find the β value that gives the best approximation in
the family for the target function. We will cover the procedure in more detail
later.

Let us go on to the next category of machine learning. In unsupervised
learning we work on unlabeled data. That is, we do not have the target vector
y at all. In this case, we are trying to track the features of data with tools
like clustering [Berkhin, 2006; Xu and Wunsch II, 2005] and independent com-
ponent analysis [Hyvärinen and Oja, 2000]. In this categorization we usually
mention semi-supervised and reinforcement learning. In semi-supervised learn-
ing [Chapelle et al., 2010] we have some labeled examples but have also hold on
a greater set of unlabeled ones. On the other hand, in reinforcement learning
[Buşoniu et al., 2008] the feedback given by a supervisor is only partial and
may, for example, consist only of hints of how well we are doing. In this thesis,

2.1. Areas of Machine Learning 9

we are mostly addressing the supervised learning as in [I, II, III, V]. However,
the method presented in [V] is also available for unlabeled data and thus for
unsupervised or semi-supervised learning.

Our goal in all these learning problems can usually be divided in two parts.
By modeling the given data, we try to create predictions on it or describe it. As
mentioned in Section 1.1, even if we are aiming for the prediction of the unknown
target attributes, the model usually also describes the underlying relationships
of the data. This makes the descriptive modeling possible. Moreover, the latter
aim is very evident in unsupervised learning. The relationship between de-
scription and prediction is especially investigated in the predictive clustering
framework [Blockeel, 1998; Blockeel and De Raedt, 1998; Blockeel et al., 1998;
Ženko, 2007; Ženko et al., 2006].

After selecting the function family, our task is to find a suitable β value by
minimizing the error estimate for Equation 2.1 on the facing page. Let us now
introduce how this subproblem is usually solved. Our task is to find a value β∗

defined by
β∗ = arg min

β
ERR(β,Etest). (2.2)

If we can not find an analytic solution, we need to use optimization methods of
some kind for this.

Unfortunately the answers given by Equation 2.2 are known to be unstable
especially if the sample size |Etest| is small in comparison with the number of
parameters related to β. Thus, we usually add some static penalty, or regu-
larization part λ|β|α that stabilizes the results. That is, we rather solve the
problem

β∗ = arg min
β

ERR(β,Etest) + λ
∑
i

|βi|α. (2.3)

Here with λ ≥ 0 we can tune the effectiveness of regularization. In addition,
α ≥ 0 affects the type of regularization and, hence, the characteristic of solution
β∗.

Thus the optimization problem usually consists of two parts: the actual loss
function L and the regularization part. For regularization popular values for
α include α = 2 (called L2 or ridge regularization) [Hoerl and Kennard, 1970;
Vapnik, 2000] and α = 1 (L1 or lasso regularization) [Donoho and Johnstone,
1994; Tibshirani, 1996]. The values have been shown to have interesting effects
on the resulting model. With regularization, we can affect, for example, the
overfitting nature of the model. Overfitting roughly means that the model is
based too deeply in details of training data and thus it loses the ability to
generalize the predictions outside the set. We will cover the regularization more

10 Chapter 2. Background

in detail in Chapter 3. However, we discuss the loss functions in slightly more
detail in the next few sections.

2.1.1 Error and Loss Functions

In an optimization task the loss function, as in Equation 2.3 on the preceding
page, maps a solution candidate to its quality. Thus, in optimization our duty is
to choose a loss function that gives small value to good solutions and larger one
for bad solutions. The loss function, hence, substantially affects the optimization
result.

A significant feature of a loss function is its possible convexity .1 For convex
loss functions every local minimal point is also a global minimal point. However,
it is worth noting that there may be also non-convex functions with a similar
property.

A simple proof of convexity for twice differentiable function f is to show
that its second derivative is always non-negative: f

′′
(x) ≥ 0. An optimization

problem with convex functions can be solved with simple and efficient local
optimization methods; whenever we end up in local minimum, we also have
a global minimum. Nevertheless, for many methods also differentiability is
needed. There are also convex functions like |x| that are not differentiable.
For more background on convex optimization, please see any optimization book
[e.g., Jarre and Vavasis, 2010].

We now go through some very often used examples of loss functions for a
couple of tasks. In supervised learning a common task is that of regression
estimation. In this case, the supervisor in Problem 1 on page 7 is simply a real
valued function y = F (x) ∈ RT which may or may not belong to our set of
model functions f(x;β). In the latter case, we are trying to get as good an
approximation as possible.

Let us first assume that the supervisor function and model functions are
scalar valued, and mark them with y = F and f in this order.

The most widely used loss function for regression tasks is the squared loss

Lsquared(y, f(x;β)) =
1

2
(y − f(x;β))2.

Especially for an interesting and common class of models, namely those that
depend linearly on β, the squared loss function has the nice property of being

1To be exact, we should talk about error function convexity, because error is the quantity
we are minimizing. However, the properties are equivalent for most errors.

2.1. Areas of Machine Learning 11

convex. The convexity over any weight βj can be seen from the following:

∂2Lsquared(y, f(x;β))

∂2βj
=

(
∂f(x;β)

∂βj

)2

︸ ︷︷ ︸
≥0

+(y − f(x;β))
∂2f(x;β)

∂2βj︸ ︷︷ ︸
=0

≥ 0.

Squared loss is known to be vulnerable to extreme, possibly defective, data
points. Thus, robuster losses have been presented [Huber, 1964].

Moreover, clear deficiency in error based on squared loss is that the value
depends on the scale of variables: if the target variable y has values in a narrow
interval like y ∈ [0, 1] we can not compare the loss function value to another
target value that has values from a wider interval. This property makes squared
error values in Equation 2.1 on page 8 incomparable between tasks.

As a solution, error functions like relative root squared error (RRSE), also
called relative root mean squared error (RRMSE), have been presented. Let us
assume that error is computed over the set E ⊆ X × Y. In this case RRSE is
defined by

ERRRRSE(β,E) =

√∑
(x,y)∈E(y − f(x;β))2∑

(x,y)∈E(y − ȳ)2
.

Here ȳ is the average of attribute y over the set E. RRSE compares the squared
error of a model with a constant model that always predicts the mean value
of the target attribute y. Thus, RRSE values over 1 mean that our model is
worse than a constant prediction. Because of these features, RRSE values are
somewhat more expressive and are often used for error reporting [II, III].

Another common task in supervised learning is classification. The only dif-
ference with regression estimation is that now the supervisor function is nominal
valued instead of real scalar. The function co-domain may be, e.g., the set of
integers y = F (x) ∈ Z. In this thesis, we concentrate mostly on regression but
cover briefly a common special case of binary function here. From this, there
are plenty of generalizations to multiple label case [Elisseeff and Weston, 2001;
Fürnkranz et al., 2008]. In binary classification the target function y = F (x)
may have only two different values from set {−1, 1}. In these cases, 0/1-loss,
which simply computes the amount of right answers, is traditionally used:

L0/1(y, f(x;β)) =
1

2

(
1− y f(x;β)

|f(x;β)|

)
.

For predictive function f(x;β) we simply interpret all positive values as label 1
and negative values as −1.

12 Chapter 2. Background

Unfortunately, this loss function is not convex and thus losses like the hinge
loss

Lhinge(y, f(x;β)) = max

(
0,

1

2
|1− yf(x;β)|

)
,

have been put forward. Also other convex classification loss functions like log-
arithmic loss exist.

2.1.2 Multi-Target Loss

As mentioned, in the traditional machine learning setting one predicts the value
of a single target attribute; categorical or a numeric one. A natural general-
ization of this setting is to predict multiple target attributes simultaneously
[Blockeel et al., 1998; Caruana, 1997]. A typical example from the environmen-
tal sciences, is the task of predicting species distribution or community structure
[Demšar et al., 2006], where we are interested in predicting the abundances of
a set of different species living in the same environment. These species rep-
resent the target attributes, which might, but need not be related. Examples
from other areas, ranging from natural language processing to bioinformatics
and medicine [Bickel et al., 2008; Jeong and Lee, 2009; Liu et al., 2010] are also
plentiful.

If our only goal is to achieve high predictive accuracy, a collection of single
target models may suffice to solve the problem. However, if we are also interested
in the interpretability of the model, the collection of single target models is
much more complex and harder to interpret than a single model that jointly
predicts all target attributes [Blockeel, 1998; Suzuki et al., 2001; Ženko and
Džeroski, 2008]. An additional benefit of the multi-target models is that they
are frequently more accurate than the corresponding collections of single target
models [Blockeel, 1998; Caruana, 1997; Kocev et al., 2007; Suzuki et al., 2001].

Several standard learning methods such as neural networks [Caruana, 1997],
decision trees [Blockeel et al., 1998], model trees [Appice and Džeroski, 2007],
classification rules [Suzuki et al., 2001; Ženko and Džeroski, 2008], random
forests [Kocev et al., 2007] and regression rule ensembles [II, III] have been
extended towards multi-target prediction.

An approach related to multi-target learning is multi-task learning [Argyriou
et al., 2008; Caruana, 1997; Chapelle et al., 2011]. In multi-task learning our
aim is to learn multiple single-target learning tasks with different training sets
(and even features) at the same time. This way, like multi-target prediction,
multi-task learning should be able to benefit from relationships between tasks.

2.1. Areas of Machine Learning 13

As a result from multi-task training we get a separate trained model for each of
the tasks.

There are some clear differences between multi-target and multi-task learn-
ing. The most obvious one between the problem domains is the amount of
trained models: a separate model for each of the tasks or single model trained
for the whole problem. Moreover, we recall from Section 2.1 the parts of a learn-
ing problem. Multi-task learning aims to predict the target features and also
describe their relationship with the descriptive features. However, the multi-
task model does not necessary aim to describe the relationships between the
target features. The last aim, nevertheless, is exactly one of the main points in
multi-target learning.

Nevertheless, it is true that the domains have some common background.
This can be seen, for instance, in the similar decision practices of the learning
algorithms in multi-target [II, III] and multi-task [Chapelle et al., 2011] domains.
Anyway, the areas have to be considered separate and we concentrate on multi-
target learning in the rest of the thesis.

L(x;β)

L L

βj

Χρ
ιστ
ος

Figure 2.1: Illustration of aggregate losses max (bold line) and avg (dashed line)
in case of two targets.

Back to multi-target learning and loss functions applicable to it. All the
loss functions presented in Section 2.1.1 are intended for scalar valued target
functions only. In case of multiple targets, we have to use some kind of aggregate.
To keep the aggregate of loss functions convex, we have at least two simple
possibilities, namely taking mean or maximum over single target loss functions.
Let us denote with Lt a loss function for the t-th coordinate yt of T dimensional
target vector y. The situation is presented in Figure 2.1. Now, the proposed

14 Chapter 2. Background

aggregate loss functions would take the form

Lavg(y,f(x;β)) =
1

T

T∑
t=1

L(yt, ft(x;β))

Lmax(y,f(x;β)) = max
t=1...T

L(yt, ft(x;β)).

We could assume the first aggregation Lavg to be more suitable. First of
all, even if Lmax is may be continuous and piecewise differentiable, it is not
usually differentiable. Thus, the behavior of many optimization methods, es-
pecially those based on the gradient, is unpredictable near the discontinuity
points. Those are naturally candidates as minimum. In practice this would
cause oscillation near the optimums. Moreover, in case of the gradient based
methods we have to compute explicit loss function values in addition to the
gradients. For Lavg gradient computation is always enough.

The aggregates also treat the targets somewhat differently. If one of the
targets is more difficult to optimize than the others—i.e., has greater loss—the
optimization with Lmax is totally dominated by it. This could, of course, be the
desired behavior. Nevertheless, Lavg gives some effect on all the targets even if
a more difficult one may still be dominating. Naturally the domination for both
loss functions can be prevented with a suitable normalization of data.

In any case, we want to report errors over multi-target data sets with RRSE.
For this we have two possibilities: On one hand, we can treat each of the
target attributes of all data sets as an independent measurement. The argument
against this option is that target attributes within one data set are probably
not independent and as a result our statistical test will show more significant
differences than there actually are. On the other hand, we can compute the
average over all targets within each data set and consider such averages as
independent measurements. The argument against the second option is that by
computing target averages we are actually “summing apples and oranges” and
the resulting average is probably not a valid quantity. In the absence of a better
available solution, our suggestion is to present statistical tests for both options.
This is what we did in our experiments [II, III].

2.1.3 Model Families for Machine Learning

In Section 1.1, we mentioned the existence of differing kinds of machine learning
methods. The choice of method type will set our possible models, that is, the
model set f(x;β). In this section, we will briefly mention a couple of methods
that will be used later in the thesis.

2.1. Areas of Machine Learning 15

One of the modern accurate approaches is the so-called support vector ma-
chine (SVM) [Vapnik, 2000]. It is based on finding a maximal margin hyper-
plane between two sets in some carefully chosen space. In Chapter 3, we present
our study on creating less overfitting models without losing in the efficiency of
the optimization process. This is done by simulating a lasso regularization by
running a more efficiently solvable problem with ridge regularization.

As already stated in Section 2.1, in addition to predictions, we can often use
the learned model itself as a source of information. In this thesis, we are espe-
cially interested in one property of the model family f(x;β): understandability
or interpretability for the human reader. That is, when a predictive model has
been trained, how well a layman can understand the reasoning behind the pre-
dictions. Naturally, the size of the model has an effect on this but the model
type is an even greater factor.

Unfortunately the most accurate predictive models like SVM tend to be
quite complex and not easily presentable to a human reader: even small SVM
models can be considered quite unreadable for a layman. SVM model consists
of weights for summation over inner products. Thus, if we want to base our
decision making on the information collected by a machine learning method,
SVM is not usually the right choice.

Fortunately, we have other techniques for creating more understandable
models. Decision rule sets [Flach and Lavrač, 2003] are commonly considered
one of the most interpretable ones. The decision rules are based on simple
IF <condition> THEN <prediction> type conditional rules that give the pre-

diction if the conditions are met, that is, if rule covers the example. The rule
conditions are created, for example, by splitting the descriptive attribute space
based on the maximum gain. In this case the averages of target values in split
intervals could form the predictions.

However, the traditional decision rule methods [like Michalski, 1969] are
not as accurate as one would hope. Fortunately, more accurate versions called
rule ensembles have been presented [Dembczyński et al., 2008b; Friedman and
Popescu, 2005, 2008]. In Chapter 4 we introduce and evaluate our rule ensembles
method which is applicable to multi-target regression environment mentioned
in Section 2.1.2.

16 Chapter 2. Background

2.2 Dynamic Input

In the traditional perspective of computer science, we are treating the given
data as a static input. This way the whole data set is available all the time
and also prior to executing the algorithm. This framework creates offline meth-
ods. On the other hand, online algorithms have been under increasing study
[Albers, 2006]. In the online framework, the data is processed, e.g., sample by
sample while arriving. There are a couple of important problems we are facing
specifically in online environment: for example the efficiency of the algorithm
for on-the-fly processing and preparation for sudden changes in the nature of
input. There is clearly a practical need for such research in form of internet and
mobile phone applications.

2.2.1 Concept Drift in Online Learning

One of the additional benefits of using ensembles of models instead of single
model learning is that they can often easily adapt to dynamically changing
input, i.e. concept drift. In concept drift the input distribution is changing due
to unknown reasons [Klinkenberg, 2004; Kolter and Maloof, 2007].

A good—and unfortunately often daily—example of concept drift are at-
tributes of junk e-mail. The senders of this kind of mail try to pass the filters
designed to eliminate unwanted e-mails. Thus, the junk mail is under continual
change when filters try to adapt to new kind of threat. In this situation, the
filtering task does not change: we try to decide if incoming mail is junk or not.
However, the features that reveal a mail to be junk transform.

But how is the ensemble learning related to this? First of all, the advantage
of an ensemble in this case is partly related to the fact that ensembles are known
to less likely overfit on the training data set [Blockeel, 1998; Caruana, 1997].
Second, like Tsymbal [2004] mentions, three approaches to handling concept
drift can be separated: instance selection, instance weighting, and weighting
base models in ensembles [e.g., Kolter and Maloof, 2007; Scholz and Klinkenberg,
2007; Wang et al., 2003]: The idea of instance selection is to select only those
instances that are relevant in current situation. Instance weighting is a more
general way of doing the previous—we now weight the instances based on their
relevance. Both of these approaches need, more or less, to tune or train the
learned models again on the modified data set.

On the other hand, the ensemble weighting approach changes the base model
weights based on their relevance to the current input. Thus, it is possible to
modify only the weights of predictors without necessarily going back to the

2.2. Dynamic Input 17

training phase. In our paper [V] we have studied a solution of weighting the base
models based on the similarity of current data input with the training data sets.
The idea of the proposed method MMDSel is to use a metric called maximum
mean discrepancy (MMD) by Smola et al. [2007] and Gretton et al. [2007a,b]
to compare the training data sets with current input. To achieve significant
improvements in time efficiency we proposed the use of approximation methods
for some versions of MMD.

Concept drift and dynamic input in machine learning environment are dis-
cussed more in detail in Chapter 6.

2.2.2 Locality of Reference on Data Structures

In online algorithm and data structures research a long perceived locality of
reference effect very similar to concept drift can be found. This phenomenon
has been modeled e.g. with working sets and recurring locality phases [Albers
et al., 2005; Shen et al., 2007].

There are a couple of reasons why the study of this kind of phenomenon
has been going on so long [Albers, 2006]: First, like in machine learning we
are interested in creating algorithms that work effectively on real applications.
Second, there are some very intriguing examples where our traditional worst
case techniques fail to give us the needed information.

The best known example is about a method called competitive analysis which
compares the algorithm with a hypothetical optimal one. In paging problem
competitive analysis unfortunately fails to separate the basic “first in first out”
algorithm from some more advanced ones like “last recently used” which in prac-
tice are more efficient. This is due to the worst case nature of the competitive
analysis. For more information, we guide the reader to the survey by Albers
[2006].

We also studied the problem of getting use of the working set model in splay
tree data structure [IV]. The introduced Wsplay algorithm is presented more
in detail in Chapter 5.

There is a clear analogy between locality of reference and concept drift. In
fact, both research problems can be expressed as special cases of a more general
model of change. Connecting the results of different areas could give us new
ideas on how to solve the problem. The analogy is covered in Chapter 6.

18 Chapter 2. Background

Chapter 3

Regularization in Convex
Optimization

In this chapter, we discuss convex optimization more in detail and in particular
the role of regularization in it. Based on [I], we also introduce some results on
support vector machine (SVM) regularization. In this chapter, we assume the
single target setting. The multi-target case will be covered in the next chapter.

In Section 2.1, we gave most of the needed background terms. However,
before we go to details we make one more assumption. In this chapter we limit
our family of models f(x;β) to the weighted sums of base predictors:

f(x;β) = f(x;w) = w0 +

M∑
i=1

wipi(x), (3.1)

where pi are base functions or base models dependent only on the descriptive
attributes x. This collection covers both SVM and rule ensembles mentioned in
Section 2.1.3.

Recall that an optimization problem is defined by equations like

w∗ = arg min
w

1

|E|
∑

(x,y)∈E

L(y, f(x;w)) + λ
M∑
i=1

|wi|α, (3.2)

where we are searching for good approximate solution w∗. In this chapter, we
assume that the loss function is convex as defined in Section 2.1.1. We already
discussed the left hand part of the optimization problem in Equation 3.2. We
now examine the regularization part λ

∑M
i=1 |wi|α more in depth.

20 Chapter 3. Regularization in Convex Optimization

3.1 Regularization

As mentioned we use the regularization part in optimization problems mostly
to stabilize the results. This way the optimization result is not as dependent
on the natural variance of randomly drawn sample |E|. In other words, the
background idea is to add some static penalty that is independent of the current
set. In addition to stability, the regularization tends to prevent the optimized
variable values wi from getting values unnecessarily far from zero.

In the regularization term λ
∑
i |wi|α we have two parameters. With λ we

can tune the strength of regularization. In one extreme with λ = 0 we get a
completely unregularized problem with great variance. In the other end λ =∞
we get a completely static result w = 0 which does not consider the actual loss
function at all.

Generally strategies like cross-validation are used to find out suitable value
for λ. In K-fold cross-validation, the training set is split into K equal size
subsets. The algorithm is repeatedly trained on K − 1 subsets and validated
with the remaining one. By uniting the results of all K validation cases we can
make assumptions on the overall behavior.

However, in the regularization term the parameter α interests us more. It
affects the type of regularization and, hence, the characteristic of the solution
w∗. Popular values for α include α = 2 (L2 or ridge regularization) [Hoerl and
Kennard, 1970; Vapnik, 2000] and α = 1 (L1 or lasso regularization) [Donoho
and Johnstone, 1994; Tibshirani, 1996]. The values have been shown to have
interestingly different effect on the resulting model:

First of all, ridge regularization tends to result in many nonzero weights
wi. This happens because with lower absolute values of |w| we lose smaller
amount when updating. For example, let η be the amount of change and ζ, ω
some weights with order 0 ≤ ζ < ω, i.e. ζ/ω < 1. Now we notice the effect by
computing how much the regularization sum is affected by updating one of the
two weights:∣∣(ζ + η)2 − ζ2

∣∣ =
∣∣2ζη + η2

∣∣ =

∣∣∣∣2ζωηω + η2
∣∣∣∣ < ∣∣(ω + η)2 − ω2

∣∣ .
Thus, ridge regularization encourages the change of the variable values near

zero and ends up having roughly equal weights for highly correlating variables.
On the other hand, lasso regularization treats weights more equally in this

sense. Namely, Tibshirani [1996] showed that lasso tends to lead to weights of
highly correlated base functions being set to zero. This, then usually means
simpler models and should help against overfitting.

3.1. Regularization 21

Figure 3.1 illustrates the effect of L1 (lasso) and L2 (ridge) regularization.
We come back to RW in Section 3.3. The shapes expose in two dimensions the
distances where the regularization penalty is equal. For lasso regularization, we
are more likely to find such solutions to the problem that have more variables set
to zero while ridge regularization has the reverse effect. However, as Friedman
and Popescu [2004] state regularization should always be chosen based on the
assumed best possible solution. Often the best solution lies between these two
extremes [Lounici et al., 2009; Rakotomamonjy et al., 2011]. If we have no prior
knowledge about it, we can again use model selection techniques like cross-
validation.

feasible region

origin
L1

L2

RW

Figure 3.1: Effect of L1 (lasso—gray square), L2 (ridge—circle in dashed line)
and their combined (RW—ellipsoid) regularization on optimization result in
two dimensional case. For each regularization, the points in shapes have equal
penalty on the optimization problem.

22 Chapter 3. Regularization in Convex Optimization

3.2 Gradient Directed Optimization

In this section, we go through a gradient directed optimization method intro-
duced by Friedman and Popescu [2004]. It finds a local minimum of the opti-
mization problem. Thus, to gain a globally optimal result, the problem has to
be convex. In addition, because the method is based on computing gradients,
the loss function has to be differentiable.

The method, as the authors claim, roughly generalizes such known methods
as gradient descent, partial least squares regression [Wold et al., 1984], ridge-
regression [Hoerl and Kennard, 1970], least angle regression [Efron et al., 2004],
and lasso regression [Tibshirani, 1996]. These optimization methods have a
variety of properties that are comparable to what was mentioned in the previous
section about regularization. Friedman and Popescu [2004] introduce how the
optimization method can be used efficiently with squared loss and robuster
Huber [1964] loss function in linear regression and classification.

The gradient directed optimization method is based on the basic gradient
descent, or steepest descent, where we always take a step toward the negative
gradient. That is, if g(x) = ∇L(y, f(x;w)) is the gradient we follow it in
infinitesimally small steps. In practice the step size is controlled with variable
γ and the step on each iteration is of form −γg(x).

However, in the gradient directed optimization we rather take step toward
a tangent vector h(x) that corresponds to some direction that lowers the error.
Simply put, we take steps that lower the error but are not necessarily directed
to the steepest slope. Formally this condition is met if the chosen direction,
tangent, projects positively on the negative gradient: hT(x)(−g(x)) > 0. Thus,
Friedman and Popescu [2004] choose the tangent direction to be

h(x) = −(l0(x)g0(x), l1(x)g1(x), . . . , lM (x)gM (x))T,

where components lj of vector l(x) are scaling factors. The tangent condition
is followed at least when scaling factors are non-negative lj ≥ 0 as we see by

following: hT(x)(−g(x)) = lT(x)‖g(x)‖2. In this case, the new weights w′ are
formed with small steps w′ = w + γh.

Setting all lj factors to some constant value causes the gradient directed
approach to be equivalent to the original gradient descent method. However,
Friedman and Popescu [2004] show that by adjusting the diversity of the scaling
factors l we can control the optimization process in a way similar to regulariza-
tion. They claim that with enough possibilities for l, infinitesimal size steps to
tangent direction h(x) essentially cover the possible paths of all the optimiza-
tion methods mentioned at the beginning of this section. Thus, we can find

3.2. Gradient Directed Optimization 23

all the optimal points reachable by those algorithms with the gradient directed
method.

However, we still have not defined the actual form of the function l that
would allow such diversity. Friedman and Popescu [2004] suggest

lj(x) = I

[
|gj(x)| ≥ τ max

0≤k≤M
|gk(x)|

]
,

where τ ∈ [0, 1] is a gradient threshold parameter that affects the diversity.
Furthermore, I[] is an indicator function that equals one if the statement is
true and zero otherwise. In practice the scaling factors grant that the tangent
vector h(x) is only affected by those gradients gj that have high enough absolute
value, relative to τ . Thus, only those weights wj are modified. Clearly with
larger values of τ we get more diversity to the optimization process by updating
less weights at each iteration.

Hence, for the gradient directed optimization the regularization part of the
optimization problem in Equation 3.2 on page 19 is not computed. Instead we
explicitly control the number of weights that get changed on each optimization
iteration. With τ = 0, we are changing all the weights on each iteration, result-
ing in a behavior similar to ridge regularization (α = 2). On the other hand,
if τ = 1, only one gradient on each iteration is modified and the behavior is
similar to lasso regularization (α = 1). We want to select the best τ value based
on our prior knowledge on the problem.

Even if we try out different τ values with cross-validation, the procedure is
very effective especially with the squared loss regression. In this case, we can
update both the gradients g and weights w efficiently because they are affected
only by the non-zero tangent vector h coordinates. Because of the definition of
scaling vector l this is usually only a small subset of gradients g. Hence, most of
the optimization time, namely |E|M2/2, is spent on computing the covariances
between the weights. In addition, we do not have to compute the covariances for
zero weighted predictive terms at all. [Friedman and Popescu, 2004] Thus, most
of the resources are usually used for optimization with lower values of τ because
that is when most of the weights are affected. For example, in our experiments,
the case τ = 0 seems to take at least half of the computing time alone.

We come back to the gradient directed optimization in Section 4.3.3. We
now move on to consider regularization more deeply.

24 Chapter 3. Regularization in Convex Optimization

3.3 Efficient Regularization in Support Vector
Machines

In this section, we present our study on support vector machines (SVM) regu-
larization [I].

3.3.1 Background

SVMs [Cortes and Vapnik, 1995; Vapnik, 2000] are a vastly studied method
for classification and regression. Their clear benefit is the stable theoretical
background backing them up. SVMs basically aim to find a maximal margin
hyperplane between two sets.

The original linear SVM is only able to separate two sets linearly in classifica-
tion setting. Thus, in this section we are talking only about binary classification.
However, the usefulness of SVMs greatly improved when it was noticed that in
the so-called dual form the optimization problem uses only inner products be-
tween training and testing instances. Thus, an implicit mapping to another
suitable inner product space can be used. With this kind of trick also nonlinear
set separators are available. In this case, the inner products are replaced with
the so-called kernel functions. The study of kernel functions has been fruit-
ful area of research—see, e.g., [Shawe-Taylor and Cristianini, 2004] for more
information.

Nevertheless, in this section we stick to linear SVM with L2 regularization.
The optimization problem is usually expressed as:

min
w

1

2
‖w‖2 + C

∑
(x,y)∈E

L(y, f(x;w)).

However, this usual form is slightly different from the one we used in Equa-
tion 3.2 on page 19, and thus we instead use the equivalent form

min
w

1

|E|
∑

(x,y)∈E

L(y, f(x;w)) + λ‖w‖2. (3.3)

In classification we usually use as a loss function either hinge loss (L1-SVM)
presented in Section 2.1.1 or its square (L2-SVM). The regularization is either
the ridge (2-norm), as in Equation 3.3, or lasso (1-norm) [Zhu et al., 2004]:∑M
i |wi| = ‖w‖1. The effect on regularization function has been analyzed at

3.3. Efficient Regularization in Support Vector Machines 25

the beginning of this chapter. As mentioned, using lasso regularization tends to
give sparser and more stable results. Thus, it would often be preferable.

Nevertheless, it seems like ridge regularized SVM is more easily solvable.
At least we have multiple optimization problem solver implementations with
many desirable abilities: for example solvers with great performance [Hsieh
et al., 2008; Shalev-Shwartz et al., 2007], scalability, stability, and availability of
different objective functions (like L1-SVM and L2-SVM) minimizations can be
mentioned. For lasso regularized SVM there has been less success with efficient
solvers.

In [I] we consider a reweighting algorithm (RW) that approximates lasso
SVM with multiple runs of ridge SVM. In addition, the optimization process
and result keeps most of the characteristics of the original 2-norm solver. Thus,
we aim to get the best parts of both 1-norm and 2-norm solving. Prior to our
work, it was already known that such a reweighting method converges to the
lasso optimization result [Grandvalet and Canu, 1999]. However, the rate of
convergence is still unknown. Fortunately, we are able to give a lower bound
per iteration for the progress. The result also gives some intuition to the pro-
cess of reweighting. For example, we notice that the convergence is slow when
coordinates are near zero.

In addition, in [I] we experimentally show that even a few iterations of
the reweighting algorithm may give a solution that is more accurate and less
overfitting than either the original ridge or the target lasso solution. However,
according to Schmidt et al. [2007] we may need hundreds of iterations to actually
converge to the lasso solution. This supports the statement by Friedman and
Popescu [2004]: the most accurate solution is often found somewhere between
the two regularization extremes (lasso and ridge).

3.3.2 Reweighting Ridge Regularized SVM

In this section, we go through the reweighting algorithm. However, let us first
define an element-wise product (Hadamard product) of two vectors w and v
with w ⊗ v = (w1v1, w2v2, . . . , wMvM)T.

The reweighting algorithm is presented in Algorithm 3.1 on the next page.
On each iteration, the descriptive attributes x are weighted with v. The weights
v, however, are iteratively computed based on previous SVM solutions so that
for iteration t > 1 the used weight in coordinate i is v(t,i) ←

√
|w(t−1,i)v(t−1,i)|,

where w(t−1,i) is the corresponding coordinate of the ridge regularized SVM
solution of iteration t− 1.

26 Chapter 3. Regularization in Convex Optimization

Input: training set E and number of iterations N
Output: weight vector w

1: v1 ← 1
2: for t = 1 to N do
3: E′t ← {(x⊗ vt, y)|(x, y) ∈ E}
4: wt ← solve ridge SVM with examples E′t
5: for each coordinate i do
6: v(t+1,i) ←

√
|w(t,i)v(t,i)|

7: end for
8: end for
9: w ← wN ⊗ vN .

10: return w

Algorithm 3.1: Algorithm for reweighting the ridge regularized SVM

See Figure 3.1 on page 21 for an illustration of effect of reweighting on
the result. The shapes expose in a two-coordinate case the areas where the
regularization penalty is equal. Every reweighting of ridge SVM solution kind
of squeezes the result into an ellipse which is nearer to lasso solution. The same
is now expressed slightly more formally.

Let us consider reweighting algorithm iteration t with our current optimiza-
tion weight wt. In addition, we assume that loss function is convex and there
is a weight vector w∗(t+1) with lower lasso regularized objective function as pre-
sented in Equation 3.3 on page 24. Let us also assume that wt has no zero
values in coordinates, where w∗(t+1) has non-zero values. This can be forced by
changing zeros to small constant values. Now we state the following.

Theorem 1. An iteration of the reweighting algorithm decreases the lasso reg-
ularized objective function value. That is, the weight w(t+1) has lower lasso
objective function value than wt.

The details of the theorem are presented in [I].
In our experiments we moreover showed that our reweighting algorithm

would be the most accurate choice after only a couple of iterations. More pre-
cisely, in the linear classification SVM problems our reweighting algorithm was
usually more accurate than the ridge or lasso regularized versions.

Chapter 4

Rule Based Ensembles

This chapter is about rule ensembles. We first introduce them generally and
then go through our multi-target rule ensemble method, Fire, introduced in
[II, III]. We also present some new experimental results on a slightly modified
version of Fire. Finally, we conclude on which of all the versions should be
preferred.

First we go through some notation. Like in Chapter 3, we are mostly ad-
dressing the weighted sums of base functions. If we are only weighting the
readily given base functions, we use the form

f(x;w) = f(x) = w0 avg +

M∑
i=1

wipi(x)

in the more general multi-target case. Here avg is a constant offset vector.
However, if we want to stress that we are still searching for the base functions,
we use the form of

f(x;β) =

M∑
i=0

pi(x;βi).

4.1 On the Background of the Rule Ensembles

Rule sets [Flach and Lavrač, 2003] are, together with decision trees, one of the
most expressive and human readable model representations. They are frequently
used when an interpretable model is desired. The majority of rule learning meth-
ods are based on the sequential covering algorithm [Michalski, 1969], originally

28 Chapter 4. Rule Based Ensembles

designed for learning ordered rule lists for binary classification domains. This is
also the case with the existing methods for learning multi-target rules [Ženko,
2007; Ženko and Džeroski, 2008] introduced in Section 2.1.2. As the reader may
recall, in the multi-target case we are predicting multiple target values at the
same time instead of the traditional single value. The accuracy of multi-target
rules on classification domains is comparable to other classification methods like
decision trees. Unfortunately, on both single target and multi-target regression
problems, the accuracy of rule sets that are learned by the sequential cover-
ing approach is considerably worse than that of other regression methods like
regression trees [for an empirical comparison see Ženko, 2007].

An alternative approach to rule learning is called rule ensembles [Friedman
and Popescu, 2005, 2008]. Strictly speaking, any set of (unordered) rules can
be called a rule ensemble like, e.g., Indurkhya and Weiss [2001] do. In this
thesis, however, a rule ensemble is understood to be a set of unordered rules
whose predictions are combined through weighted voting, which is the approach
originally introduced by RuleFit [Friedman and Popescu, 2005, 2008], and used
by RegEnder [Dembczyński et al., 2008a,b] as well as in sour multi-target rule
ensemble method Fire [II, III].

In the next few sections, we discuss some rule ensembles approaches for single
target and multi-target regression problems.

4.2 Rule Ensembles in Single Target Regression

We first go through the single target rule ensemble methods in regression prob-
lems. So, we need to get a weighted sum of unordered rules for approximating
some scalar valued function.

First of all, the name of rule ensembles is a bit misleading: in addition to
rules, for example in RuleFit, we can also use the simple linear functions of
numeric descriptive attributes and add them to the initial set of rules. Thus,
the final prediction for a given example is obtained by a weighted voting of all
linear terms and those rules that apply (i.e., cover the example). The resulting
model can, hence, be written as:

ŷ = f(x) = w0 +

N∑
i=1

wiri(x) +

K∑
j=1

w(N+j)xj︸ ︷︷ ︸
optional

, (4.1)

where w0 is the baseline prediction, the first sum is the correction value obtained

4.2. Rule Ensembles in Single Target Regression 29

from the N rules, and the second sum is the correction value obtained from
the (optional) K linear terms. The rules ri are here represented as indicator
functions mentioned in Section 3.2: they have a value of 1 for all examples
that they cover, and 0 otherwise. For RegEnder, adding linear terms is not
possible.

Input: training examples E
Constants: the desired size of the ensembleM , subsample size η and memory
or shrinkage parameter ν
Output: members of the ensemble p

1: f0(x)← arg minw
∑

(x,y)∈E L(y, w)
2: for m = 1 to M do
3: Draw randomly Em ⊆ E with |Em| = η.
4: βm ← arg minβ

∑
(x,y)∈Em

L(y, fm−1(x) + p(x;β))

5: pm(x)← p(x;βm)
6: fm(x)← fm−1(x) + ν pm(x)
7: end for
8: return (f0(x), p1(x), p2(x), . . . , pm(x))T

Algorithm 4.1: General ensemble generation.

RegEnder [Dembczyński et al., 2008a] is based on the idea first suggested
by Friedman and Popescu [2003, 2005] and shown in Algorithm 4.1. In short,
RegEnder seeks one rule and its weight (both on line 4) at a time and adds
the predictor to the ensemble.

Let us discuss the solution by Dembczyński et al. [2008a] in more detail.
First of all, they only have rules: pi(x;β) = wiri(x;β′). Note, that β and β′ are
not exactly equivalent because β also holds the information about the weight.

The optimization problem for adding a rule on line 4 of Algorithm 4.1
is computationally too hard to be practical, but Dembczyński et al. [2008a]
demonstrate greedy approximation methods for a couple of loss functions and
techniques. The precise form of the minimization depends on the used loss func-
tion and minimization technique. We give the gradient boosting technique for
squared loss here because this resulted in the most accurate models. They solve
the problem in two parts.

30 Chapter 4. Rule Based Ensembles

First, the authors find the conditional part of the rule ri(x;β′) by minimizing
the loss greedily single elementary expression at time. In this case Dembczyński
et al. [2008a] give the form of

β′m = arg min
β′
−

∣∣∣∑(x,y)∈Em∧r(x;β′)=1 (y − fm−1(x))
∣∣∣

2
√∑

(x,y)∈Em
r(x;β′)

(4.2)

for minimization by gradient boosting.
Second, the weight wm should be found by solving the line-search problem

wm = arg min
w

∑
(x,y)∈Em

L(y, fm−1(x) + wr(x;β′m)).

However, for squared loss Lsquared an analytical solution can be found:

wm = −

∣∣∣∑(x,y)∈Em∧r(x;β′
m)=1 (y − fm−1(x))

∣∣∣√∑
(x,y)∈Em

r(x;β′m)
.

Interestingly, the solution is nearly identical to the rule condition optimization
in Equation 4.2.

The possibility of analytical solution for weights with this technique-loss
combination is a clear benefit in RegEnder approach. On the other hand, the
greedy rule searching procedure may not find the best possible rules.

Friedman and Popescu [2005, 2008] also note this possibility of creating a
rule ensemble directly with the general method mentioned in Algorithm 4.1
on the previous page. However, they point out that solving the optimization
problem on line 4 directly is impractical.

The approach used by their RuleFit method is roughly presented in Al-
gorithm 4.2 on the facing page: Friedman and Popescu [2005, 2008] exploit
the existing efficient algorithms for producing decision tree ensembles. Thus,
RuleFit starts by generating a set of decision trees {dh(x)}Hh=1 in much the
same way as ensembles are generated by methods like bagging [Breiman, 1996]
and random forests [Breiman, 2001]. In fact they use their own more general en-
semble framework Isle [Friedman and Popescu, 2003] which is a generalization
of the previously mentioned ones. This generation is executed on lines 1–7.

4.2. Rule Ensembles in Single Target Regression 31

Input: training examples E
Constants: desired size of the initial tree ensemble H, subsample size η and
memory or shrinkage parameter ν
Output: members of the rule ensemble p with their weights w

1: f0(x)← arg minw
∑

(x,y)∈E L(y, w)
2: for h = 1 to H do
3: Draw randomly Eh ⊆ E with |Eh| = η.
4: βh ← arg minβ

∑
(x,y)∈Eh

L(y, fh−1(x) + d(x;β))

5: dh(x)← d(x;βh)
6: fh(x)← fh−1(x) + ν dh(x)
7: end for
8: r ← ConvertTreeNodesToRules((d1, d2, . . . , dH)T)
9: p← (r1, r2, . . . , rN , x1, x2, . . . , xK)T {Optionally xj}

10: w ← arg minw
∑

(x,y)∈E L
(
y, w0 +

∑N
i=1 wiri(x) +

∑K
j=1 w(N+j)xj

)
11: return (p,w)

Algorithm 4.2: Another, RuleFit, approach for rule ensemble generation.

All the trees are then transcribed into a collection of rules on line 8, and
an optimization procedure (line 10) is used to select a subset of rules and to
determine their weights. As a result, they get a set of weighted rules. In addition
to rules, it is possible to use the simple linear functions of descriptive attributes,
add them to the initial set of rules, and likewise select them and determine their
weights in the optimization step. The linear terms part of the model is global,
that is, it covers the entire example space. Note that this is different from
model trees [Karalič, 1992; Quinlan, 1992; Wang and Witten, 1997], where we
have local linear models in separate leaves, which only cover specific examples.
The overall model is then like the one presented in Equation 4.1 on page 28.

The most difficult task is to find the optimal weights on line 10. How-
ever, Friedman and Popescu [2008] point out that using the gradient directed
optimization method by Friedman and Popescu [2004] this can be done quite ef-
ficiently. The method was already discussed briefly in Section 3.2. As the reader
may recall, one of the main insights in the approach is the way of simulating
different regularization techniques efficiently. We come back to the optimization
method when considering our own multi-target rule ensemble method Fire in
Section 4.3.3.

32 Chapter 4. Rule Based Ensembles

4.3 Learning Rule Based Ensembles for Multi-
Target Regression

In the previous sections, we introduced some background on rule ensembles and
two single target rule ensembles methods. We next cover our suggestion for the
first multi-target rule ensemble method.

Our algorithm for learning rule based ensembles for multi-target regression
problems (which we call Fire: Fitted rule ensembles) [III, II] is based on the
RuleFit method [Friedman and Popescu, 2005, 2008]. The top level of the Fire
algorithm is outlined in pseudo code of Algorithm 4.3. It starts by generating
a set of diverse regression trees, which are converted to rules. Because linear
dependencies are known to be difficult to approximate with rules, in [III] we
proposed to optionally add linear terms (simple linear functions) of all numeric
descriptive attributes to the collection. The original algorithm in [II] did not
include this possibility.

Input: training examples E
Constants: gradient limit step step and overfitting parameter threshold
Output: members of the rule ensemble p with their weights w

1: d← GenerateSetOfTrees(E)
2: r ← ConvertTreesToRules(d)
3: p← AddLinearTerms(E, r) {Optional linear terms}
4: ERRmin ←∞
5: for τ = 1.0 to 0.0 with step do
6: (wτ ,ERRτ)← OptimizeWeights(p,E, τ)
7: if ERRτ < ERRmin then
8: (wopt,ERRmin)← (wτ ,ERRτ)
9: else if ERRτ > threshold ·ERRmin then

10: break
11: end if
12: end for
13: (p′,w′)← RemoveZeroWeightedTerms(p,wopt)
14: return (p′,w′)

Algorithm 4.3: The algorithm Fire for learning rule ensembles for multi-target
regression.

4.3. Learning Rule Based Ensembles for Multi-Target Regression 33

Fire then optimizes the weights of rules and linear terms with a gradient
directed optimization algorithm. This optimization procedure depends on a
gradient threshold parameter τ and we repeat the optimization for different
values of τ in order to find a set of weights with the smallest validation error.
In the end, we remove all the rules and linear terms whose weights are zero.

The resulting rule ensemble is a vector function f ; given an unlabeled ex-
ample x it predicts a vector ŷ consisting of the values of all target attributes:

ŷ = f(x) = w0 avg +

N∑
i=1

wiri(x) +

T∑
t=1

K∑
j=1

w(t,j)x(t,j)︸ ︷︷ ︸
optional

. (4.3)

The first term includes a constant vector avg, whose components are the average
values for each of the targets. The first sum is the contribution of the N rules:
each rule ri is a vector function that gives a constant prediction, if it covers the
example x, or returns a zero vector otherwise.

The double sum in Equation 4.3 is the contribution of optional linear terms.
There is a term for each combination of target and numeric descriptive at-
tributes, thus the total number of linear terms is the number of numeric de-
scriptive attributes K times the number of target attributes T . A linear term
x(t,j) is a vector that corresponds to the influence of the j-th numerical descrip-
tive attribute xj on the t-th target attribute; its t-th component is equal to xj ,
while all other components are zero:

x(t,j) = (0, . . . , 0
t−1

, xj
t

, 0
t+1

, . . . , 0)T.

The values of all weights w are determined during the optimization phase, and
because of interpretability one of our goals is to have as many weights equal to
zero as possible.

Example 1. Let the problem domain have eight descriptive attributes x =
(x1, . . . , x8) and three target attributes y = (y1, y2, y3). A hypothetic rule en-
semble that predicts all the target values of this domain simultaneously could

34 Chapter 4. Rule Based Ensembles

be:

ŷT = fT(x) = 0.95 (16.2, 6.0, 21.1)

+ 0.34 [IF (x8 > 3.8) & (x6 > 7.2) THEN (15.9, 36.2, 14.4)]

+ 0.21 [IF (x3 ≤ 12.1) THEN (6.3, 50.0,−14.3)]

+ 0.80(x2, 0, 0) + 0.11(0, 0, x2) + 0.17(0, x5, 0) + 0.22(0, 0, x5)

= (15.4 + 0.80x2, 5.7 + 0.17x5, 20.0 + 0.11x2 + 0.22x5)

+ [IF (x8 > 3.8)&(x6 > 7.2) THEN (5.4, 12.3, 4.9)]

+ [IF (x3 ≤ 12.1) THEN (1.3, 10.5,−3.0)]

It comprises a constant vector, two rules and four linear terms (of attributes x2
and x5), but can also be simplified in a sum of a vector of linear equations and
two rules.

Now, given a descriptive attribute vector, e.g.,

x† = (0.0, 1.0, 9.0, 6.4, 2.0, 5.5, 0.0, 4.2)T,

we get the corresponding prediction

fT(x†) = (15.4 + 0.8, 5.7 + 0.34, 20.0 + 0.11 + 0.44)

+ (1.3, 10.5, −3.0)

= (17.5, 16.54, 17.55).

So far, we have only briefly mentioned two important aspects of our algo-
rithm, the generation of the initial collection of trees, rules and linear terms,
and the weight optimization procedure. We describe them in detail in the next
two subsections.

4.3.1 Generation of Base Models

The basic decision tree learning method used within the GenerateSetOfTrees
procedure of Fire (Algorithm 4.3 on page 32) is the predictive clustering tree
learning method [Blockeel et al., 1998] that can learn multi-target regression
trees. As a starting point, we use the implementation of this paradigm within
the system Clus [Blockeel and Struyf, 2002], which can learn multi-target re-
gression trees [Struyf and Džeroski, 2006]. A set of diverse trees is generated
with the multi-target implementation of the random forest ensemble method
[Kocev et al., 2007], modified to generate trees of limited depth.

4.3. Learning Rule Based Ensembles for Multi-Target Regression 35

It is well known that variance of constituent base models is essential for
good accuracy of ensembles [Dietterich, 2000]. In order to increase the tree
(and, thus, rule) variance, the RuleFit method [Friedman and Popescu, 2008]
limits the depth of a particular tree in a randomized fashion. We also adopt
this approach as detailed in [III].

All regression trees generated with the above procedure are transcribed into
rules with the ConvertTreesToRules procedure and each leaf of each tree is
converted to a rule. The weights of these rules are later computed with the
gradient directed optimization. However, before optimizing the rule weights, it
is necessary to normalize their predictions.

Namely, the optimization problem we are solving is not invariant to the
scaling of rule predictions. Nevertheless, as in [III], we would like to put all the
rules and targets on the same line when the optimization error is considered.

Unfortunately, the approach used by Friedman and Popescu [2008, Sec-
tion 3.2] can not be used for multi-target problems since setting the rule predic-
tions for all targets to 1 would delete all the information on relations between the
targets. In addition to equalizing the initial importance of rules, we also have
to equalize the effect of different targets during the optimization. Otherwise,
targets with large scales would dominate the rule selection.

In order to equalize the importance of different rules and different targets
we proceed with three separate steps: Firstly, we simply zero-center all the
target dimensions. Secondly, we scale each rule with a factor that represents
the prior magnitude of the rule. This should equalize the effect of the rules on
the optimization process. Thirdly, we normalize the differing scales of target
spaces away temporarily. This last step is omitted after optimization. The first
and last step of the process are trivial and repeated in most of the optimization
processes.

In the first step, we make all the rule target predictions r′ zero-centered
by subtracting the average avg from each of the original rule predictions r′′:
r′ = r′′−avg. The average avg contains the average values of target attributes
on the learning set.

In the second, more complex, step we scale the predicted values r′t of each
target attribute t by dividing them with some factor γ:

rt =
r′t
γ
. (4.4)

However, we have a couple of alternatives for the scaling factor.

36 Chapter 4. Rule Based Ensembles

Let σt be the standard deviation of a target attribute t over the entire
learning set. Assuming a normal distribution, dividing a zero-centered target
attribute t by 2σt should put 95% of all values within the [−1, 1] interval.

Knowing this, there are a couple of ways to scale the rule target predictions
by defining the factor γ for normalization. We can, for instance, normalize with
the average of target prediction values or with the maximum absolute value
when standard deviations are eliminated. That is, we would make all the rules
have equal average of target predictions or equal maximal target prediction.

The first option would mean normalization by average values:

γavg =
1

T

T∑
i=1

r′i
2σi

.

This form of γ might be more intuitive because rules end up having equal average
of targets. This is discussed more in Section 4.4.3.

The second option was used in [II, III] and would mean computing the max-
imum target value r′m where the index m ∈ {1, . . . , T} has following property:

m = arg max
t

∣∣∣∣ r′t2σt

∣∣∣∣ .
Simply put, r′m is the largest target prediction when the scale of targets is omit-
ted. In this maximum based case the normalization factor γ for Equation 4.4
on the previous page would be

γmax =
r′m

2σm
.

An interesting note is that in this latter option we can bound the predictions
r∗t . After this second stage of normalization, it holds that r∗m = 1 and |r∗t | =
|σm/r′m r′t/σt| ≤ 1 for all other targets t by the definition of m. This has analogy
with the solution of Friedman and Popescu [2008] in the single target case.

Either way, at the second stage of normalization the target predictions rt in
a certain rule r are scaled by a factor γ that represents the prior degree of the
mentioned rule. Thus, both ways of normalization roughly equalize the rules
before the optimization phases and affect the rules of the final model. After
these two normalization steps our rule predictions are of form:

r =
r′

γ
=
r′′ − avg

γ
.

4.3. Learning Rule Based Ensembles for Multi-Target Regression 37

Finally, we are in the last, temporarily affecting, step of normalization. In
this step, we equalize the scaling differences between different target attribute
spaces. However, clearly our intention is to use this normalization only tem-
porarily during optimization. Otherwise the resulting model would no more be
applicable to real world data. We do this simply by dividing the target attribute
prediction values rt by two times their standard deviations 2σt:

r∗t =
rt

2σt
=

r′t
2σtγ

=
r′′t − avgt

2σtγ
.

4.3.2 Optional Linear Terms

We recall from Equation 4.3 on page 33 that in addition to rules we can op-
tionally add linear terms to the rule ensemble. As already mentioned, a single
linear term is defined as

x(t,j) = (0, . . . , 0
t−1

, xj
t

, 0
t+1

, . . . , 0)T,

which depicts the influence of the descriptive attribute xj on the target attribute
t. We add linear terms for all possible combinations of numeric descriptive
attributes and target attributes.

The linear terms are normalized in a somewhat similar way as rules. How-
ever, unlike rules, linear terms are affected by two attributes and, thus, two at-
tribute space scales: that of the j-th feature space and that of t-th target space.
In addition, linear terms with their single non-zero coordinate are multi-target
only in principle. There is no sense in scaling with the average or maximum
coordinate of linear terms as was done in the second normalization stage. These
differences have to be taken into account.

We again shift the linear terms by the average x′′j of the j-th descriptive

attribute x′(t,j) = (0, . . . , x′′j −x′′j , . . . , 0)T. Here x′′j is the original attribute xj
value. However, we continue by normalizing the terms to the target attribute
scale

x(t,j) = x′(t,j)
σt
σj
.

Here we note the effect of two separate attribute spaces.
There would be an option to scale linear terms by multiplying them with

T . Intuitively, this could bring their effect to the same level with rules because
of the T − 1 zero-valued coordinates in linear terms. However, in practice this
seemed to stress linear terms too much and cause reduction in accuracy. We
discuss this briefly in the experimental section.

38 Chapter 4. Rule Based Ensembles

Linear terms normalized like this appear in the final rule ensemble model. A
similar normalization of linear terms is also performed in the RuleFit method
[Friedman and Popescu, 2008, Section 5].

However, analogously to the third stage of rule normalization we also scale
the target dimension space out temporarily:

x∗(t,j) =
x(t,j)

2σt
=
x′(t,j)

2σj
.

This is, again, only intended to equalize the terms of different target attributes
during the optimization procedure.

4.3.3 Gradient Directed Weight Optimization

The weights from Equation 4.3 on page 33 are determined within the Opti-
mizeWeights procedure presented in Algorithm 4.4 on the facing page. As men-
tioned in Equation 3.2 on page 19, the optimization problem we are solving is
typically written as

arg min
w

∑
x∈E

L(y,f(x;w)) + λ

M∑
i=1

|wi|α, (4.5)

where L is the loss function and the last term is the regularization part. In our
case, because of interpretability, we aim to keep the model as small as possible
with the regularization. However, we are not solving this optimization problem
directly: rather, we are using the approach proposed by Friedman and Popescu
[2004], also used by the RuleFit method and discussed in Section 3.2. They
propose a gradient directed optimization method with a squared loss

Lt(yt, ft(x)) =
1

2
(ft(x)− yt)2.

As in Section 2.1.2, we denote the target dimension with index t.
We are aiming to use a gradient directed optimization method for our weight

optimization. Thus, as we found out in Section 2.1.2, a suitable generalization of
loss function for our multi-target problem is taking the average over the squared
loss of all T target attributes:

L(y,f(x)) = Lavg(y,f(x)) =
1

T

T∑
t=1

Lt(yt, ft(x)). (4.6)

4.3. Learning Rule Based Ensembles for Multi-Target Regression 39

Input: base models p, training examples E and gradient threshold τ
Constants: limit for iterations, number of allowed nonzero weights and over-
fitting parameter threshold
Output: weights w and an error estimate ERR

1: w0 = 0
2: (Et,Ev)← SplitSet(E) {Training and validation sample}
3: for i = 0 to Maximum number of iterations do
4: do every 100 iterations
5: ERRi ← Error(Ev,p,wi)
6: if ERRi > threshold ·minj<i ERRj then
7: goto line 19
8: else if ERRi < minj<i ERRj then
9: StoreWeights(wi,ERRi)

10: end if
11: end do
12: g ← ComputeGradients(Et,p,wi)
13: if Limit of allowed nonzero weights is reached then
14: g ← {gk ∈ g|w(i,k) 6= 0}
15: end if
16: gmax ← {gj ∈ g| |gj | ≥ τ maxk |gk|}
17: wi+1 ← ChangeWeightsWithStep(gmax,wi)
18: end for
19: (w,ERR)←WeightsWithSmallestError(Ev,p)
20: return (w,ERR)

Algorithm 4.4: Procedure OptimizeWeights for the gradient directed optimiza-
tion.

We recall from Section 3.2 that in this gradient directed optimization method
we do not explicitly compute the regularization part of the optimization prob-
lem. Instead we change only the largest gradients (in terms of absolute values)
of each iteration. The limit of modified gradients is tuned by the parameter
τ . In our case, lasso regularization seems to be the best choice, because it has
been shown to lead to many weights being set to zero [Tibshirani, 1996], which
means simpler and more interpretable models with fewer rules.

However, in practice it is hard to know in advance which value of τ will result
in the most accurate model. Both theoretical and experimental results suggest
that differing regularization suit better different data types [Lounici et al., 2009;

40 Chapter 4. Rule Based Ensembles

Rakotomamonjy et al., 2011]. Thus, the most suitable value of τ depends on
the properties of the learning data. We overcome this problem by trying a set
of different values of τ (Algorithm 4.3 on page 32, line 5) and estimating their
accuracies on a separate validation set, which is the same for all τ values. In
the end, the model with the smallest validation error is selected.

Our aim is to efficiently learn a rule ensemble model that is both small
and accurate. Therefore, we start with a τ value that creates a small model,
τ = 1, and then iteratively decrease the value of τ until it reaches zero. We
stop the loop if the validation error increases above a threshold, since it is
unlikely that trying smaller values would result in a more accurate model. It
is possible that we are stopping in only a local optimum and the result can
be a suboptimal model. However, not evaluating the lower τ values does not
seem to lower the accuracy significantly in practical experiments. Also, this
procedure is very effective, because, as Friedman and Popescu [2004] point out,
most of the optimization time is spent on computing the covariances between
the weights. Thus, as discussed in Section 3.2, the lower τ values use the main
part of computer time.

We now go through the optimization procedure OptimizeWeights presented
in Algorithm 4.4 on the previous page in more detail. The procedure starts by
initializing all the weights to zero and splitting the entire learning set E into an
internal training set Et and a validation set Ev. Within the loop, we iteratively
compute the gradients gk for each of the weights (line 12) and then change the
selected weights wj in the most promising direction for a predefined step size
(line 17). The step size is automatically computed constant which is based on
the theoretically optimal step. See our publication [III, Appendix A] for a more
detailed description of the step size computation.

In addition to this basic idea, there are some additional details implemented.
First, on every 100-th iteration we stop the optimization if we are overfitting
(line 6), that is, if the validation error starts to increase. Second, we can define
a maximum number of nonzero weights in advance (lines 13–15), which makes
a suitable parameter for setting the accuracy vs. simplicity trade-off.

We already have an experimental evaluation of the previous versions of the
algorithm presented in our papers [II, III]. However, in the following sections we
present some novel results: among others, the results of the Fire with average
normalizing discussed in Section 4.3.1.

4.4. Empirical Evaluation 41

4.4 Empirical Evaluation

In this section, our primary target is to evaluate the discussed new normalization
for Fire and compare it with previous versions. Because the novel average
normalization affects only multi-target behavior of Fire, we skip the single
target data sets presented in [III]. In addition, to avoid needless redundancy we
only briefly mention the equivalent test settings and parameters. The details
can be found in the paper.

In the experimental evaluation, we investigate three issues. First, we com-
pare Fire with other multi-target methods. As reference algorithms, we use
three other multi-target variants of popular tree based methods: regression
trees [Blockeel et al., 1998], random forests [Kocev et al., 2007], and model trees
[Appice and Džeroski, 2007]. In the comparison, we focus on the accuracy and
size of the learned models. The model size is used to indicate the interpretabil-
ity of the model. As described in Section 4.3, Fire has a parameter that can be
used to limit the total number of nonzero weights, that is, the number of rules
and linear terms. We use this parameter in the second part of the evaluation to
investigate how the size of a rule ensemble influences its accuracy.

Thirdly, based on all the experiments we evaluate the two presented normal-
ization techniques, average and maximum based, and the effect of linear terms.
In this part, we try to find out whether the novel more intuitive normalization
is sometimes more accurate. We also want to know when the use of linear terms
benefits us.

Our preliminary experiments showed that, in some cases, we can significantly
reduce the model size with only a marginal decrease in accuracy. This is the
reason why in the first evaluation we also include results for Fire models with
an arbitrary limit of 30 rules and terms (denoted as “Max 30” in the results).
Another optional setting of the Fire algorithm is whether to include linear
terms in the model or not. We present both cases in all evaluation scenarios;
models with linear terms are denoted as “+ linear”.

4.4.1 Experimental Setting

In this section, we present the algorithms and their parameter settings, evalua-
tion methodology and data sets used.

Whenever possible, the parameters of Fire are set to the values used by
Friedman and Popescu [2008] in the RuleFit method. When generating the
initial set of trees (Algorithm 4.3 on page 32, line 1) we use 100 random trees
with an average depth of 3 (in practice, the average number of terminal nodes in

42 Chapter 4. Rule Based Ensembles

our implementation is about 7). The optimization procedure (Algorithm 4.3 on
page 32, line 5) is run with the gradient threshold parameter τ values ranging
from 1 to 0 in 0.1 decrements. In the OptimizeWeights procedure (Algorithm 4.4
on page 39), the initial set E is split into 2/3 for training (Et) and 1/3 for
validation (Ev). The maximum number of optimization iterations is 10,000.
The threshold for detecting error increase (Algorithm 4.3 on page 32, line 9
and Algorithm 4.4 on page 39, line 6) is 1.1 and the step size is computed
automatically based on the optimal step size as described in [III] appendix. Our
algorithm, as well as regression trees [Blockeel et al., 1998] and random forests
[Kocev et al., 2007] used in our experiments are implemented in the Clus2

predictive clustering system [Blockeel and Struyf, 2002]. All the parameters for
regression trees and random forests are set to their default values; regression
trees use reduced error pruning, random forests consist of 100 trees.

We cover the other algorithm parameters only briefly here. The detailed
parameter values of the algorithms are presented in [III].

For experiments with model trees, we use the multi-target implementation
MtSmoti by Appice and Džeroski [2007] with the recommended settings. Ex-
periments with the rule ensemble methods RuleFit and RegEnder were per-
formed with the original implementations of their authors and with the settings
that lead to the best performance in the original papers [Dembczyński et al.,
2008a; Friedman and Popescu, 2004, 2008].

The data sets used in the experiments, together with their properties, are
presented in Table 4.1 on the next page. Publicly available multi-target data
sets are, unfortunately, scarce. In addition to a single public data set from
UCI repository [Frank and Asuncion, 2011], we have collected ten previously
analyzed data sets. The references are given in the table.

The accuracy of the learned regression models is estimated for each target
attribute by computing the RRSE values ERRRRSE defined in Equation 2.1.1
on page 11. The size of tree based models (regression trees, random forests, and
MtSmoti) is measured as the number of leaves in all the trees. The size of rule
ensemble models (Fire, RuleFit, and RegEnder) is measured as the number
of rules or the sum of the number of rules and linear terms, if linear terms are
used. All the above measures are estimated using 10-fold cross-validation, where
the folds for each data set are the same for all the algorithms.

2Available at http://www.cs.kuleuven.be/~dtai/clus under the GNU General Public
License.

http://www.cs.kuleuven.be/~dtai/clus

4
.4

.
E

m
p

irical
E

valu
ation

43

Data set # exs % miss # nom # num # tar # all source
vals atts atts atts atts

Collembolan 393 20.4 8 40 3 51 [Kampichler et al., 2000]
Edm 154 0.0 0 16 2 18 [Karalič and Bratko, 1997]
Forest Kras 60,607 0.0 0 160 11 171 [Džeroski et al., 2006]
Forest Slivnica 6,219 0.0 0 149 2 151 [Stojanova, 2009]
Meta learning 42 27.9 0 56 10 66 [Džeroski et al., 2002]
Microarthropods 1,944 0.1 0 142 3 145 [Demšar et al., 2006]
Sigmea real 817 0.0 0 4 2 6 [Demšar et al., 2005]
Sigmea simulated 10,368 0.0 2 8 3 13 [Džeroski et al., 2005]
Solar flare 323 0.0 10 0 3 13 Uci
Vegetation 29,679 0.0 0 64 11 75 [Gjorgjioski et al., 2008]
Water quality 1,060 0.0 0 16 14 30 [Džeroski et al., 2000]

Table 4.1: The experimental evaluation data sets, their properties and references.

44 Chapter 4. Rule Based Ensembles

To test whether any of the observed differences in accuracy and size be-
tween the algorithms are significant, we followed the methodology suggested by
Demšar [2006]: First, we use the Friedman test to check if there are any statis-
tically significant differences between the compared algorithms. If the answer is
positive, we additionally use the Nemenyi post-hoc test to find out what these
differences are, and present them by average ranks diagrams. These diagrams
show all the compared algorithms in the order of their average ranks; the best
are on the right and the worst are on the left side of the diagram. The algorithms
that differ by less than a critical distance for a p-value = 0.05 are connected with
a horizontal bar and are not significantly different. We perform such significance
testing for each of the RRSE and model size metrics. Recall from Section 2.1.1
we show the RRSE values for two cases: for each target separately and averages
over targets of single data sets. The results of the experimental evaluation are
presented in the next section.

4.4.2 Results

The results of the algorithms are mostly the same as the ones presented in [III].
Only the used Fire version has changed a little bit.

4.4.2.1 Multi-Target Regression

For multi-target data, the Friedman test shows that the RRSE values of algo-
rithms are significantly different with a p-value < 2.2 · 10−16, if we treat each
target separately, and with a p-value = 3.3 ·10−5, if we compare target averages
over each data set. The model sizes are different with a p-value = 7.9 · 10−11.
The average ranks and results of the Nemenyi test are given in Figure 4.1 on
the next page for RRSE evaluated on separate targets (a), RRSE evaluated on
target averages within data sets (b), and model size (c).

The ranking of algorithms in Figure 4.1 on the facing page is nearly equiv-
alent to the results in [III]. The only notable difference is in the per data set
target average evaluation (b), where the linear term version of Fire is slightly
and non-significantly winning over the random forest. Thus, we achieve at most
only a little by changing our normalization style from the average based to the
new maximum based.

In diagram (a) random forests and both unlimited Fire versions are more
accurate than regression trees, the limited versions of Fire, and MtSmoti.
Due to small critical distance, the three more accurate algorithms are signifi-
cantly better than the rest. Evaluation over target averages within data sets (b)

4.4. Empirical Evaluation 45

1234567

CD

MTSMOTI

FIRE + linear, Max 30

FIRE, Max 30

Tree

FIRE

FIRE + linear

Random forest

(a) RRSE, per target evaluation

1234567

CD

FIRE + linear, Max 30

MTSMOTI

FIRE, Max 30

Tree

FIRE

Random forest

FIRE + linear

(b) RRSE, per data set target average evaluation

1234567

CD

Random forest

FIRE + linear

FIRE

FIRE + linear, Max 30

FIRE, Max 30

Tree

MTSMOTI

(c) size

Figure 4.1: The average ranks diagrams on multi-target data for RRSE evalu-
ated on separate targets (a), on target averages within data sets (b) and model
size (c). Better algorithms are on the right-hand side, the ones that do not
differ significantly by the Nemenyi test (p-value = 0.05) are connected with a
horizontal bar. CD is the critical distance.

46 Chapter 4. Rule Based Ensembles

shows a similar picture, but because the sample size is smaller (11 data sets vs.
63 targets), the critical distance is larger and differences are less significant:
Only Fire with linear terms and random forests are significantly better than
MtSmoti and the limited versions of Fire. Now linear terms seem to increase
the accuracy of unlimited Fire considerably but for limited versions the effect
seems to be negative. The regression trees are usually in the middle class. Ad-
ditional examination showed that we need a limit of 60–70 for Fire to overtake
regression trees. The diagram for size (c) is almost identical to the previous ver-
sion of Fire: The limited Fire, regression trees and MtSmoti are significantly
smaller than the two most accurate models.

The detailed results of the algorithm comparison in Table 4.2 on page 50 are
also almost identical to the ones achieved in [III] on multi-target regression data:
the difference in average sizes between the random forest and the unlimited Fire
versions is huge but the accuracy differences are rather small. When both size
and accuracy are taken into account, the unlimited version of Fire with linear
terms seems to perform very well on multi-target regression problems.

An interesting detail we should notice is that the average proportion of linear
terms in the unlimited model is 24%, but it drops to only 3% if we limit the
model size to 30. For some reason the linear terms do not seem very useful in
small models. Only a small number of linear terms are kept in the resulting
model and they seem to have mostly negative effect on accuracy. Also in our
additional experiments we stressed the linear terms by multiplying them with
the number of target values T as we proposed in Section 4.3.2. This modification
increased the average amount of linear terms to 50% for limited Fire, but only
reduced the accuracy. From this, we could conclude that linear terms are a
useful addition only if the training data is already well covered with rules.

It is also interesting that the proportion of linear terms highly depends on
the data set. This suggests that for some data sets rules are not enough for high
accuracy. For example, Forest Slivnica and Sigmea real seem to be quite
linear in nature, because the unlimited Fire version with linear terms prevails
in these when compared with the one without them.

data set tree random forest Fire Fire + linear Fire, Max 30 Fire + linear, MtSmoti
Max 30

target attributes RRSE # RRSE # RRSE # RRSE # [%] RRSE # RRSE # [%] RRSE #

Collembolan 0.97 3 0.92 13,145 0.94 547 0.94 643 [15] 0.95 30 0.95 30 [0] 1.04 16

species-nb 0.98 0.94 0.96 0.96 0.97 0.97 1.01

abud-total 0.96 0.93 0.95 0.95 0.96 0.96 1.10

abud-f.quad 0.96 0.89 0.90 0.90 0.91 0.91 1.01

Edm 0.72 11 0.69 2,923 0.68 617 0.68 645 [5] 0.68 30 0.68 30 [0] 0.85 2

d-flow 0.68 0.66 0.64 0.65 0.67 0.67 0.92

d-gap 0.75 0.71 0.71 0.71 0.69 0.69 0.77

Forest Kras 0.62 1,142 0.55 1,530,421 0.65 830 0.64 2,590 [68] 0.72 30 0.72 30 [0] 0.69 10

cc 0.53 0.47 0.56 0.54 0.61 0.61 0.57

fsh 0.49 0.42 0.53 0.52 0.61 0.61 0.59

delveg 0.53 0.47 0.55 0.54 0.60 0.60 0.56

vpv1-hmx 0.60 0.52 0.63 0.62 0.72 0.72 0.68

vpv1-h99 0.58 0.51 0.62 0.61 0.71 0.71 0.68

vpv1-h95 0.57 0.50 0.61 0.60 0.70 0.70 0.67

vpv1-h75 0.57 0.51 0.61 0.60 0.70 0.70 0.67

vpv1-h50 0.60 0.54 0.64 0.63 0.72 0.72 0.70

vpv1-h25 0.66 0.60 0.70 0.70 0.76 0.76 0.75

vpv1-h10 0.76 0.69 0.78 0.78 0.83 0.83 0.82

vpv1-h05 0.83 0.76 0.83 0.83 0.87 0.88 0.86

Forest Slivnica 0.54 321 0.49 227,198 0.50 705 0.47 1,014 [26] 0.58 30 0.58 30 [10] 0.51 4

height 0.56 0.51 0.53 0.49 0.61 0.62 0.52

cover 0.52 0.48 0.47 0.45 0.54 0.55 0.50

Table 4.2: Continued on the next page.

Continued from the previous page.

data set tree random forest Fire Fire + linear Fire, Max 30 Fire + linear, MtSmoti
Max 30

target attributes RRSE # RRSE # RRSE # RRSE # [%] RRSE # RRSE # [%] RRSE #

Meta learning 1.36 2 0.92 1,415 0.88 464 0.88 974 [52] 0.94 17 0.94 18 [0] 1.20 2

ltree 1.47 0.93 0.87 0.88 0.95 0.95 1.20

c50-rules 1.46 0.92 0.84 0.84 0.93 0.93 1.17

lindiscr 1.12 0.87 0.82 0.83 0.89 0.89 0.96

mlcib1 1.49 0.95 0.89 0.87 0.95 0.95 1.28

mlcnb 1.29 0.92 0.92 0.95 0.98 0.97 1.08

ripper 1.33 0.93 0.85 0.84 0.84 0.84 1.13

clem-rbfn 1.11 0.89 0.92 0.92 0.99 0.99 1.20

c50-tree 1.47 0.93 0.87 0.87 0.94 0.94 1.24

clem-mlp 1.22 0.94 0.93 0.91 0.98 0.97 1.54

c50-boost 1.51 0.95 0.90 0.89 0.98 0.97 1.20

Microarthropods 0.77 52 0.74 12,411 0.75 642 0.74 1,059 [39] 0.84 30 0.84 30 [0] 0.83 18

acari 0.76 0.71 0.73 0.72 0.82 0.82 0.79

collembolan 0.74 0.74 0.74 0.74 0.81 0.81 0.75

sh-biodiv 0.81 0.75 0.77 0.77 0.90 0.90 0.94

Sigmea real 0.61 12 0.65 22,506 0.68 158 0.66 180 [4] 0.74 17 0.77 30 [6] 0.62 7

mfo 0.62 0.67 0.73 0.72 0.77 0.82 0.64

mso 0.61 0.62 0.63 0.59 0.71 0.72 0.59

Sigmea simulated 0.03 146 0.02 78,750 0.04 658 0.03 676 [3] 0.08 30 0.08 30 [13] 0.05 17

disp-rate 0.03 0.02 0.04 0.04 0.09 0.09 0.05

disp-seeds 0.03 0.02 0.03 0.03 0.07 0.07 0.04

Table 4.2: Continued on the next page.

Continued from the previous page.

data set tree random forest Fire Fire + linear Fire, Max 30 Fire + linear, MtSmoti
Max 30

target attributes RRSE # RRSE # RRSE # RRSE # [%] RRSE # RRSE # [%] RRSE #

Solar flare 0.99 2 1.05 3,974 1.00 499 1.00 499 [0] 1.01 25 1.01 25 [0] 1.02 14

c-class 0.99 1.03 1.01 1.01 1.00 1.00 1.03

m-class 0.97 1.04 0.99 0.99 0.98 0.98 1.00

x-class 1.01 1.07 1.01 1.01 1.03 1.03 1.04

Vegetation 0.82 349 0.72 1,102,508 0.80 826 0.79 1,541 [46] 0.88 30 0.88 30 [0] 0.89 8

number-spp 0.80 0.67 0.74 0.73 0.85 0.85 0.94

dem 0.68 0.52 0.65 0.63 0.79 0.79 0.81

twi 0.70 0.60 0.67 0.66 0.74 0.74 0.80

solar 0.99 0.97 0.99 0.98 0.99 0.99 0.99

thinvk 0.96 0.88 0.94 0.93 0.98 0.98 0.96

thk 0.96 0.88 0.94 0.94 0.98 0.98 0.96

eff-rain 0.68 0.53 0.66 0.64 0.79 0.79 0.81

mint-jul 0.72 0.58 0.69 0.67 0.82 0.82 0.83

max-feb 0.68 0.53 0.67 0.65 0.83 0.83 0.85

grnd-dpth 0.81 0.71 0.78 0.77 0.87 0.87 0.89

salinity 0.94 0.89 0.92 0.91 0.97 0.97 0.97

Table 4.2: Continued on the next page.

Continued from the previous page.

data set tree random forest Fire Fire + linear Fire, Max 30 Fire + linear, MtSmoti
Max 30

target attributes RRSE # RRSE # RRSE # RRSE # [%] RRSE # RRSE # [%] RRSE #

Water quality 0.96 5 0.90 41,568 0.94 802 0.94 995 [19] 0.94 30 0.94 30 [0] 0.96 8

clad-sp 0.99 0.94 0.96 0.96 0.96 0.96 0.98

gong-inc 1.00 0.97 1.00 0.99 0.99 0.99 1.00

oedo-sp 1.00 0.94 0.97 0.96 0.97 0.97 0.99

tige-ten 0.95 0.88 0.93 0.93 0.92 0.92 0.95

melo-var 0.98 0.90 0.93 0.93 0.94 0.95 0.97

nitz-pal 0.90 0.83 0.87 0.87 0.86 0.86 0.89

audo-cha 0.98 0.96 0.98 0.98 0.97 0.97 0.98

erpo-oct 0.97 0.91 0.94 0.94 0.93 0.93 0.97

gamm-foss 0.93 0.80 0.83 0.83 0.89 0.89 0.91

baet-rhod 0.97 0.89 0.94 0.94 0.95 0.95 0.96

hydro-sp 0.98 0.90 0.95 0.95 0.96 0.96 0.97

rhya-sp 0.96 0.90 0.92 0.92 0.93 0.93 0.94

simu-sp 0.99 0.94 0.97 0.97 0.99 0.99 1.00

tubi-sp 0.89 0.84 0.91 0.91 0.87 0.87 0.91

average – targets 0.87 0.75 0.79 0.78 0.83 0.83 0.88
average – data sets 0.76 185.9 0.70 276,075 0.71 613.5 0.71 983.3 [25] 0.76 27.2 0.76 28.5 [2.6] 0.79 9.6

Table 4.2: Comparison of RRSE for multi-target regression. For each data set, we first
give the average RRSE over all targets, and then the RRSE for each target separately. In each row,
the smallest error is typeset in bold. Size is given either as the number of rules and
linear terms or as the number of terminal nodes in trees. Besides the model sizes (#), we
also give in brackets the percentage of linear terms within the total model size ([%] if
present). Two final rows give the average RRSEs over all targets, over data set target
averages and average model size over all data sets.

4.4. Empirical Evaluation 51

4.4.2.2 Model Size Limitation

Experiments presented in the previous section considered two size limit options
for the Fire algorithm, one with the maximum model size set to 30, and one
without any model size restrictions. In this subsection, we present experiments
with different values of the maximum model size parameter. These hopefully
show how the model size limit influences the accuracy of models. In addition to
the unlimited version, we use values between 10 and 100.

The average ranks diagrams comparing different maximum model size pa-
rameters are presented in Figure 4.2 on the following page. Diagrams (a) and
(b) show RRSE on multi-target data for per-target evaluation and for per-data
set target average evaluation, respectively. Because of a larger sample, there
are more significant differences in (a) than in (b), however, what is common to
both diagrams is the trend that smaller models are also less accurate. The size
limitation parameter can therefore be used as an accuracy for simplicity (and
interpretability) trade-off setting.

Moreover, it is interesting that linear terms usually have only small negative
effect on the accuracy. The sole exception to this is the unlimited version where
the linear term version surpasses. This result on average based normalization
differs from the behavior of maximum based normalization [III]. In case of
maximum based normalization, the Fire versions with the limit higher than
40 terms got some benefit from the linear terms. For smaller ensembles, the
effect was similar to the one we got on average normalization. Nevertheless, the
unlimited Fire with linear terms is now also the most accurate model. However,
the difference with some other versions is not great.

4.4.3 Analysis of Normalization and the Use of Linear
Terms

We also wanted to examine how the alternative rule normalization technique
affects the rule ensemble prediction. The meaning of rule normalization is to
scale both base models and targets so that they have somewhat similar impact
on the loss function in optimization. The problem clearly more generally touches
the field of multi-target prediction; nevertheless, it is more explicit for weighted
rule ensembles. For single target prediction the problem is trivial. Friedman
and Popescu [2008], for example, just make all the rule predictions equal to 1.

For normalization between targets, we have a clear solution, used also in [III]:
scale the targets with their standard deviation. However, it is more problematic
to scale each of the rules so that they have more or less the same impact on the

52 Chapter 4. Rule Based Ensembles

12345678910111213141516

CD

FIRE + linear, Max 10

FIRE, Max 10

FIRE, Max 20

FIRE + linear, Max 20

FIRE + linear, Max 30

FIRE, Max 30

FIRE + linear, Max 40

FIRE, Max 40 FIRE + linear, Max 60

FIRE, Max 60

FIRE + linear, Max 80

FIRE, Max 80

FIRE + linear, Max 100

FIRE

FIRE, Max 100

FIRE + linear

(a) per target evaluation

12345678910111213141516

CD

FIRE + linear, Max 10

FIRE, Max 10

FIRE, Max 20

FIRE + linear, Max 20

FIRE + linear, Max 30

FIRE, Max 30

FIRE, Max 40

FIRE + linear, Max 40 FIRE, Max 60

FIRE + linear, Max 60

FIRE, Max 80

FIRE + linear, Max 80

FIRE

FIRE, Max 100

FIRE + linear, Max 100

FIRE + linear

(b) per data set target average evaluation

Figure 4.2: The average ranks diagrams of Fire with different model size lim-
itations for RRSE on multi-target data evaluated on separate targets (a), and
on target averages within data sets (b). Better algorithms are on the right side,
the ones that do not differ significantly by the Nemenyi test (p-value = 0.05)
are connected with a horizontal bar. CD is the critical distance.

4.4. Empirical Evaluation 53

loss function when all targets are considered. Our proposition in [III] was to
scale the rules according to their maximal target prediction and ended up with
all predictions on the interval [−1, 1].

Nevertheless, perhaps such normalization stresses too much the rules with
many approximately equal valued targets: In one extreme we may end up with
a rule predicting 1 for all the targets or with a rule predicting 1 for a target
and zeros for the rest. In the previous case the average of all the T predictions
is 1 and in the latter 1/T . As in Section 2.1.1, our loss function is an average
aggregation of single target loss functions. Thus, the average of rule predictions
should give a good impression of the effect of rule on the loss function.

Hence, in this thesis we proposed an alternative way of normalization: av-
erage based technique. Instead of scaling the predictions based on the maximal
value, we rather do it on the average of the absolute values of predictions.
Thus, all the rules are bound to have the same average of 1 and roughly the
same impact on the loss function. Nevertheless, in this case we can not give
any guarantees for the single prediction values as we did for maximum based
normalization.

Based on the experiments presented in [III] and in the previous section the
differing effect of two normalization variances on the resulting model seems to
be quite small. The average model size for unlimited Fire seems to be 10–15%
larger for average based than for maximum based normalization. There is no
clear difference in average accuracies, but diagram (b) in Figure 4.1 on page 45
suggests some statistically unsignificant improvement in average normalization
for the unlimited version.

However, when we compare multiple model size limitations for both the Fire
normalizations, we get a differing result. The Nemenyi test comparison is pre-
sented in Figure 4.3 on the following page. In the figure, we denote by “MAX”
and “AVG” the maximum and average based normalization respectively.

First we note that the maximum based normalization is nearly always statis-
tically non-significantly more accurate than the analogous average based normal-
ization. Sometimes the difference is even notable, e.g. with unlimited versions.
The only exceptions are the smallest versions with a maximum term limit of
30. However, further experimentation on small limit sizes shows that this is
barely an exception and maximum based normalization prevails also on small
limits. Also based on results in [III] we note that linear terms are helpful in
multi-target evaluation usually only with term limit 50 or greater.

In addition to normalizing the rules, we have to solve the same problem for
multi-target linear terms. We have now normalized the linear terms only by
scaling most of the values on the interval [−1, 1]. Nevertheless, in the average

54 Chapter 4. Rule Based Ensembles

12345678910111213141516

CD

MAX, Max 30

MAX + linear, Max 30

AVG + linear, Max 30

AVG, Max 30

AVG + linear, Max 50

AVG, Max 50

MAX, Max 50

MAX + linear, Max 50 AVG + linear, Max 100

AVG, Max 100

AVG

MAX, Max 100

MAX + linear, Max 100

MAX

AVG + linear

MAX + linear

(a) per target evaluation

12345678910111213141516

CD

MAX + linear, Max 30

MAX, Max 30

AVG + linear, Max 30

AVG, Max 30

AVG, Max 50

MAX, Max 50

AVG + linear, Max 50

MAX + linear, Max 50 AVG, Max 100

MAX, Max 100

AVG + linear, Max 100

AVG

MAX

MAX + linear, Max 100

AVG + linear

MAX + linear

(b) per data set target average evaluation

Figure 4.3: The average ranks diagrams of Fire with different normalization
versions and multiple model size limitations for RRSE on multi-target data
evaluated on separate targets (a), and on target averages within data sets (b).
Better algorithms are on the right side, the ones that do not differ significantly
by the Nemenyi test (p-value = 0.05) are connected with a horizontal bar. CD
is the critical distance.

4.5. Conclusions on the Multi-Target Rule Ensemble Method 55

based normalization if we want to make the linear terms equal to rules in terms
of impact, we should take care that the averages over the absolute values of
target predictions are similar. To achieve this we could simply multiply the
single nonzero prediction of linear terms with the number of target values T .
Like proposed in Section 4.3.2 we also tried this in our initial experiments, but
surprisingly this seemed to end up in more inaccurate models. Probably this
put too much stress on linear terms in the optimization.

4.5 Conclusions on the Multi-Target Rule En-
semble Method

In this chapter, we went through some rule ensembles methods for regression
learning. We also presented our algorithm Fire for generalizing rule ensembles
to multi-target prediction.

Fire has a simple parameter for limiting the size (the number of rules and
linear terms) of the learned model. This enables us to trade accuracy for size
(and interpretability) of the learned models. We experimentally evaluated its
behavior with different normalization techniques, limit parameter values, and
whether optional linear terms are added to the ensemble.

We got two important conclusions on Fire. First of all, which one of the
normalization tactics should we use? Roughly speaking, it does not seem to
matter much. If we have preferences of some kind on the relation between the
target prediction values, it can easily be used. However, because of somewhat
smaller models and slightly increased accuracy the maximum based normaliza-
tion presented in [III] should maybe be the default choice.

Second, as a general suggestion we could conclude that for larger, with term
limit 50 or greater, multi-target rule ensembles adding linear terms should ben-
efit. On the other hand, for smaller rule ensembles we should select the version
without them. However, for single target rule ensembles the linear terms seem
to help all the time as seen in [III].

56 Chapter 4. Rule Based Ensembles

Chapter 5

Binary Search Trees in Online
Context

In this chapter, we change our focus temporarily from machine learning to the
world of data structures. However, in the next chapter we will show how much
similarity can be found in these seemingly distinct areas of computer science.

A binary search tree (BST) is a data structure where the integer valued keys
are stored in a binary tree like structure in symmetric order. A tree consists of
nodes which include a key, two references to left and right child and possibly
additional constant sized fields. If y is a child of x, then x is the parent of y. If
a node y can be reached with one or more parent–child steps from the node x,
y is a descendant of the node x and x is called an ancestor of y. For any node
x in a BST, its left (resp. right) descendants have key values less than3 (resp.
greater than) the key value of x. Any node x and its descendants form a subtree
where x is considered the root. Because of the symmetric order, there cannot
be cycles in the BST. Thus, for any subtree there is an unambiguous root. If
no subtree is mentioned, we refer to the root of the whole BST. The depth of a
node is the amount of parent–child steps from the root to the node. Thus, the
root has a depth of 0. The height of the tree is defined to be the depth of the
deepest node. An example binary search tree is presented in Figure 5.1 on the
next page.

3Sometimes multiple elements with equal key value are allowed. Then e.g. the left subtree
may include these. However, only one of the elements can be accessed with normal BST
access.

58 Chapter 5. Binary Search Trees in Online Context

Leena, my love

Ale
ksa

nd
ra

Nadja

Sonja

Figure 5.1: A binary search tree of height 4.

Clearly the form of BST is flexible: a BST of size n can be either a singly-
linked list of length n or a perfectly balanced BST with a height of dlog(n+1)e.4
Because the access time in BST depends on its height, there is plenty of work
on minimizing it, that is, balancing the tree. Traditionally local modifications
called rotations are used for this [Cormen et al., 2009]. Often BSTs have a bal-
ance invariant independent of the access sequence. The invariant is maintained
by the rotations during every access.

5.1 Splay Trees in Theory

Splay tree [Sleator and Tarjan, 1985] is a BST which keeps balance by splay
operation during every access. Splay trees do not have provably logarithmic
worst-case bounds of individual operations, but still behave well under amor-
tized analysis. When splaying, the accessed item is elevated to the root of the
tree using specific rotations. These operations keep the tree pretty well in bal-
ance. Because no other balancing is enforced, a splay tree does not contain any
additional information and, thus, does not require extra storage space. Because
of its strategy, a splay tree also keeps recently accessed items very near the root.

Splay trees are most well known for their vast theoretical properties. Follow-
ing results are reported for m size access sequence x1, x2, . . . , xm in amortized
asymptotic sense. Amortized bounds could be called worst-case bounds over
sequences, not single accesses. Bădoiu et al. [2007], for instance, list at least the
following properties:

4We use the base 2 for the logarithm: log = log2.

5.1. Splay Trees in Theory 59

• Balance bound states that if no information about the access distribu-
tion is known, splay tree is as efficient as any possible offline or online
BST [Sleator and Tarjan, 1985]. More formally, the access of element
x is bound by O(log(n + 1)) in amortized sense. There are other BSTs
like red black tree [Bayer, 1972; Cormen et al., 2009] that achieve this in
worst-case for single access.

• Entropy bound or static-optimality bound states that splay trees are
in amortized sense as efficient as any offline BST that knows beforehand
the access frequencies of elements [Sleator and Tarjan, 1985]. Note, that
splay tree achieves this without knowing the frequencies. More formally,
let p(x) be the access frequency for element x in the BST. The splay tree
access time for the element is bound by O(1 + log[1/p(x)]).

• Another interesting bound is so called static-finger bound which denotes
that for any fixed key f the access time of element x is relative to the
difference of their key values, or rank distance d(f, x) [Sleator and Tarjan,
1985]. Rank distance di(y, z) is defined by the number of elements in
BST between y and z in time i. Formally the bound states that splay
tree accesses element x in O(log[di(x, f) + 2]) amortized time. Here the
+2 term is included by Bădoiu et al. [2007] to make the time positive.
What makes the bound interesting is the fact that splay tree achieves
it again without knowing the f at all, that is, for all alternatives of f
simultaneously.

• The working set bound is more general than any of the previous ones
and thus implies all the previously mentioned in amortized sense [Iacono,
2001b]. It roughly states that recently accessed elements are still efficiently
accessible. Formally, let wi(x) be the number of different elements accessed
before time i since the last access of item x. In this case, splay tree is able
to access element x in O(log[wi(x) + 2]) time [Sleator and Tarjan, 1985].

• The dynamic-finger bound, however, is independent from the working
set bound. It roughly states that elements that are near, in terms of rank
difference, the last accessed elements are efficiently accessible. Formally,
it states that the access xi takes at most O(log[di(xi−1, xi)+2]) time. The
amortized access time bound was conjectured for splay trees by Sleator
and Tarjan [1985] and proved by Cole [2000] and Cole et al. [2000].

60 Chapter 5. Binary Search Trees in Online Context

Iacono [2001a] and Bădoiu et al. [2007] point out that separately working
set and dynamic finger properties fail at least on sequences like

1,
n

2
+ 1, 2,

n

2
+ 2, 3,

n

2
+ 3, . . . ,

n

2
, n, 1,

n

2
+ 1,

Both the working set and dynamic finger bounds give only O(m log n) bound
for access. The authors unite the two bounds in a strictly more general one
called the unified bound. It roughly states that elements that are near the
previously accessed elements are efficiently accessible. Formally let Si be the
set of elements in BST before access i. Then the unified bound can be defined
by

O

(
min
y∈Si

log[wi(y) + di(xi, y) + 2]

)
.

Bădoiu et al. [2007] also conjecture that splay tree accesses are bounded by this
in amortized sense, but no BST has yet been proved to achieve the unified bound.
The authors also introduce a non-BST data structure having this property in the
worst case. Nevertheless, there are other attempts to prove nearly the unified
bound for BSTs in amortized sense [Bose et al., 2010; Derryberry and Sleator,
2009].

Behind all these bounds, we are naturally aiming for the dynamic optimal-
ity bound which states that no other search tree algorithm is asymptotically
more efficient than the considered one for any access sequence. This was conjec-
tured in amortized sense for splay trees by Sleator and Tarjan [1985] and there
has been some progress on this. For example, Demaine et al. [2007] present an
algorithm that is a factor of log log n far from it.

An interesting theoretical examination of splay trees has been presented by
Subramanian [1996]. He proposed a more general group of trees possessing
similar properties as splay trees. The splay heuristic has additionally been
applied in other tree structures [Badr and Oommen, 2005].

5.2 Practical Efficiency of Splay Trees

In practical use, the splay trees are problematic because of the amount of ex-
pensive rotations during each access. The need for splaying can be reduced by
randomizing the decision of whether to splay or not in connection of an operation
[Albers and Karpinski, 2002; Fürer, 1999] as well as by heuristic limit-splaying
algorithms [Lai and Wood, 1991; Sleator and Tarjan, 1985; Williams et al.,
2001].

5.2. Practical Efficiency of Splay Trees 61

Also, the theoretical bounds mentioned before would suggest that splay trees
should work well in environments with a high locality of reference. However,
some empirical studies [Bell and Gupta, 1993; Heinz and Zobel, 2002; Williams
et al., 2001] have indicated that, when related to other data structures, they
could actually be at their best in highly dynamic environments, where the focus
of locality drifts over time. Moreover, despite careful implementation basic
splay tree variations have empirically been observed to be less efficient than red
black trees (RBs), standard BSTs, and hashing at least in some situations [Bell
and Gupta, 1993; Williams et al., 2001]. Randomized adaptive data structures
can do better [Albers and Karpinski, 2002; Williams et al., 2001], but only
heuristic limit-splaying has been competitive in practice [Williams et al., 2001].
However, some more recent studies [Lee and Martel, 2007; Pfaff, 2004] have
demonstrated that in some settings splay trees may be more efficient than other
BSTs. Motivated by these, we studied what could be achieved by splaying only
when a need for an update is noticed [IV].

The idea of our algorithm Wsplay [IV] is to track the changes of the access
sequence in a sense of working set property. Randomized splay trees achieve
some practical savings without giving in on asymptotic efficiency. However, they
do not pay attention to the request sequence and we achieved some improvement
with this.

In particular, we examine access request sequences that exhibit locality of
reference in the form of working sets [Denning, 1980]. This means that, at
any time interval, most accesses refer only to a small portion of all keys — the
current working set. Real-world situations often conform with this assumption.
Of course, we may not afford to implement a too complicated request sequence
monitoring method.

The Wsplay algorithm maintains a (discounted) counter to monitor the
depths of recent searches in the tree. Low average search depth indicates that
a working set exists near the root of the tree and is being actively used. Occa-
sional deep searches do not change the situation. Only when the searches are
constantly deep, is there a need to update the splay tree.

Independent of us Lee and Martel [2007] proposed an algorithm very similar
to ours [IV] for cache efficient splaying. Their algorithm uses a sliding window of
accesses. The algorithm executes splaying if a too large portion of the accesses is
deeper than a predefined limit depth. They also present experiments somewhat
similar to ours. However, their test setting is a lot more static and, thus, gives
a more optimistic view on the proposed algorithms.

62 Chapter 5. Binary Search Trees in Online Context

5.3 Conditional Adaptation of a BST

Before introducing the BST algorithm intended to cope with working sets, we
give the basic philosophy of the algorithm: how to identify a working set and
its change.

First of all we should execute splay operations only when the active working
set is not near the root or when the whole tree is unbalanced. Thus, unnecessary
splaying is avoided in accessing a single item outside the working set as well as
an item of the working set already near the root.

In order to gain knowledge of the input we simply maintain a discounted
depth counter, which gives us information about the relation between on-going
access operations and the current working set. If the last few access operations
are deep, we can conclude that the working set has changed or the tree is not
in balance. Thus, there is a need to splay to correct the situation.

For our counter, we need an approximate value for the size of working sets
b. See, e.g., [Denning, 1980; Dhodapkar and Smith, 2002] for techniques on
approximating b. With this value, we can calculate the limit depth limitw,
which represents the acceptable average depth for access operations in working
sets. We set limitw = a log2(b+ 1), where the multiplier a is a constant chosen
suitably for the current environment.

The value of the condition counter is updated in connection of an access
operation to depth as follows:

counter ← d · counter + depth − limitw.

Here the discounting factor d, 0 ≤ d < 1, is a constant regulating the impact
of the history of access operations on the current value. The difference depth −
limitw tells us how much (if at all) below the limit depth we have reached. If the
value of counter is non-positive, we may assume that splaying is not required.
On the other hand, a positive value suggests that the operation is needed.

Taking discounted history into account ensures that isolated accesses outside
the working set do not restructure the tree needlessly. On the other hand, giving
too much weight to earlier accesses makes the data structure slow to react to
changes in the working set.

We analyzed in [IV] the case where the limitw value is a constant. Using
simple calculus we can prove that the average depth of non-splayed phases
is bound by 2limitw = 2a log(b + 1). Thus, we get the amortized bound of
O(a log b + log n) = O(limitw + log n). By restricting limitw = O(log n) we
clearly get overall amortized bound O(log n) like for splay tree.

5.4. A Dynamic Version of Wsplay 63

However, we could as well let the value of limitw change during the execution
of the algorithm. In fact, in the empirical evaluation of [IV] we use a dynamically
changing limitw. We can clearly keep the time bounds by giving maximal value
for the dynamic limitw. In the next section, we introduce the version of Wsplay
that was used in the experiments, that is, the version where limitw changes
during the execution.

There are alternatives for our approach. We could, for example, get rid
of the whole discounting philosophy and use individual access counters for the
keys. These counters should be included either in the nodes of the tree or kept
in a separate data structure. However, e.g., Lai and Wood [1991] have already
inspected the first approach with splay tree. Also Seidel and Aragon [1996]
introduced randomized search trees and Cheetham et al. [1993] conditional ro-
tating based on this approach. Because keeping the nodes free from additional
information is an essential part of splay trees, we would, nevertheless, like to
find another way.

On the other hand, if the counters were kept in a separate data structure,
updating this information would be problematic. We are, anyway, mostly in-
terested in only the last access operations. Thus, too static counters would
not react quickly enough to the altering working set. Hence, we should have a
technique to decrease the significance of old access operations. Lee and Martel
[2007] solve the problem by counting only the amount of deep accesses, that is,
the accesses that are deeper than the limit. Thus their solution loses informa-
tion about the access depths. Another possibility would be to have a circular
buffer which includes the depths of accesses in a window. With this solution,
the average depth of accesses could be easily computed. However, the use of dis-
counted depth computation does not force us to set an explicit history horizon
after which depths are forgotten.

5.4 A Dynamic Version of Wsplay

Let us now introduce in more detail an algorithm based on the information
collecting approach described above. Wsplay in Algorithm 5.1 on the following
page simply splays whenever the condition counter implies that the working set
is changing.

The main functionalism of Wsplay algorithm is on the lines 12–22. Because
of simplicity, this was also the version presented in [IV]. Function BSTaccess
implements the standard BST access and returns the depth of the accessed item.
As we want to execute the more efficient top-down version of splaying, we splay

64 Chapter 5. Binary Search Trees in Online Context

Constants: the factors for discounting d, and limitw adjustment c
Parameters: initial value for limitw, and the target portion of splaying p

1: {A starting window without splaying.}
2: if number of accesses < 1/p then
3: BSTaccess(x)
4: return
5: end if
6: {Adjust limitw to get portion p of splaying.}
7: ∆limitw ← c (number of splays/number of accesses − p)
8: if Splayed last access and ∆limitw > 0 or

Non-splayed last access and ∆limitw < 0 then
9: limitw = limitw + ∆limitw

10: end if
11: {The rest code lines include the original static Wsplay.}
12: if counter > 0 then
13: depth ← Splay(x)
14: counter ← depth − limitw
15: else
16: depth ← BSTaccess(x)
17: counter ← counter · d+ depth − limitw
18: if counter > 0 then
19: depth ← Splay(x)
20: counter ← depth − limitw
21: end if
22: end if

Algorithm 5.1: The dynamic Wsplay algorithm.

if counter indicates the need for splaying at the beginning of access at line 12.
This is the case when the previous access operation, which necessarily included
splaying, was deep. Thus, we avoid doing unnecessary BST access before every
top-down splay. Otherwise, on lines 16–21, we access the item, update the
condition counter, and splay if the updated counter value indicates a need for
it. Observe that, after each execution of the Splay function, on lines 14 and 20
the history of access depths is erased.

The problem in evaluating Wsplay is to control its two parameters d and
limitw. The rest of the code addresses this. Examining all value combinations
would be a massive task. However, moderate changes in the value of parameter

5.4. A Dynamic Version of Wsplay 65

d do not affect the results much in practice. Hence, we can easily use a constant
value near 1 for it. In [IV] we used d = 0.9.

The parameter limitw is more problematic because with different values the
results vary greatly. However, we are mostly interested in the efficiency of splay
reduction by monitoring. Thus, it would be natural to compare its efficiency
against data structures that reduce splaying without such monitoring. Ran-
domized splay trees [Albers and Karpinski, 2002; Fürer, 1999] do it at random.
The data structure of Albers and Karpinski [2002], referred here as Rsplay,
matches Wsplay perfectly in a sense that it contains no other modifications to
basic splay trees than reduced splaying.

Rsplay needs as a parameter the probability p. With the probability 1 −
p standard BST access is executed instead of splaying. We modify Wsplay
to execute the same amount of splaying by including simple adaptation for
the variable limitw. We adjust the limit in the beginning of every access by
adding a value proportional to difference between p and amount of executed
splay operations. This is done on lines 7 and 9 of the algorithm. For this we
need yet another constant c to tune the agility of limit depth adjustment: we
use c = 0.1 log(n).

Nevertheless, oscillation around the optimal limit depth is clearly a possibil-
ity in the adjustment. To prevent this we allow the modification of limitw only
if the direction of change ∆limitw agrees with the information given in the last
access. Thus, if last access is splayed, it is possible that limitw is too low and
it might have to be increased and vice versa. This is done on the lines 8–10 of
the algorithm.

Moreover, one more practical thing is that we need to prevent the algorithm
from executing all the available splaying in the beginning. This could happen
because of the great influence of first access depths on the limitw adaptation.
Thus, on lines 2–5 we start the sequence with a margin of length 1/p where no
splaying is allowed.

With this version it is possible to relate Rsplay and Wsplay with different
values of p.

In the experiments with highly dynamic data reported in [IV] the gains
were contradictory. On one hand, both the average access depth and time were
reduced when compared with randomized splaying. This was also the case in
comparison with splay with high skewness. On the other hand, splay trees
excelled with a high locality of reference. Also red black trees were still usually
more efficient in these experiments.

However, as mentioned in the previous section, Lee and Martel [2007] got
more optimistic results with a similar algorithm, but using more static data set.

66 Chapter 5. Binary Search Trees in Online Context

Chapter 6

Working Sets as Drifting
Concepts

Recall from Section 2.2, locality of reference considered in Chapter 5 has much
to do with the concept drift occurring in machine learning. In this chapter, we
point out the analogies and try to find a common framework for both of the
phenomena. Our aim in the work is to present solutions used for one field that
could be useful for the other one.

We first start by illustrating the characteristics of each of the fields. Then
we continue with introducing our own proposal for a more general problem
statement that includes both of the areas. Moreover, we explain the progress
made on both sides. In this, we are almost exclusively referring to work done
by others.

6.1 Working Sets and Locality Phases

In the area of process scheduling and memory paging a very long known reg-
ularity called locality of reference (LR) is observed. The effect is also called
principle of locality. Denning [1968, 1980] presented working sets to model this
phenomenon. He defined a working set to be the set of referenced memory pages
by a process during some time interval. An essential property of his working
set definition is that we expect past page references to be a good prediction for
immediate future references. A working set can also be presumed to roughly
indicate the process using it [Dhodapkar and Smith, 2002]. The information

68 Chapter 6. Working Sets as Drifting Concepts

can, thus, be used to more generally predict the behavior of currently executed
processes. An interesting glance to the history of LR is given by Denning [2005].

In theoretical discussion, modeling LR makes efficiency estimation more rel-
evant in practice [Albers et al., 2005; Angelopoulos et al., 2008; Dorrigiv and
López-Ortiz, 2008]. More directly, knowledge about working sets can be used
to increase the theoretically proved performance of various algorithms: e.g., by
analyzing the amount of cache misses when predicting referenced pages or in
data structure analysis [Bose et al., 2010; Bădoiu et al., 2007; Iacono, 2001a;
Sleator and Tarjan, 1985].

LR is often split into two distinct categories: In case of temporal locality, a
reference is often reused in the near future. In spatial locality, references near
each other, in a sense of memory address location, are often used simultane-
ously. In addition, more complex patterns can be formed. Especially in spatial
dimension references often form a linearly increasing order.

The current research within this area is often based on indicating recurring
phases [Denning, 1980; Shen et al., 2007] instead of analyzing the change. A
phase is the maximum interval over which the working set remains more or
less constant. When a phase that has appeared previously is indicated again,
we restore the information gathered about it. In practice restoring may mean
selecting and moving the corresponding reference pages to the more efficient
memory in advance. This process is called refetching [Gramacy et al., 2003].

When addressing working set phases, we identify at least the following con-
crete tasks:

• Like Dhodapkar and Smith [2002] mention, the working set can be in-
dicated by collecting its identity and size. Because not all the accessed
elements are actually accessed multiple times (we could talk about noise)
some robustness is needed in identity tracking. Otherwise we are identify-
ing too many working set phases. For example in case of refetching, we are
bound to be overwhelmed by the cost of reference page data movement.
The identification could include information about the working set size, a
fingerprint and the interval of reaccessing instances, called reuse distance
[Ding and Zhong, 2003].

• Traditionally the methods for tracking the phases use either a sliding win-
dow or a series of non-overlapping windows following each other. However,
also the use of multiple simultaneous windows has been tried [Nagpurka
et al., 2006]. A straightforward way to discover similarities with different
working set sequences W1 and W2 is presented by Dhodapkar and Smith

6.2. Concept Drift 69

[2002] as a concept of working set distance:

δ(W1,W2) =
|W1

⋃
W2| − |W1

⋂
W2|

|W1

⋃
W2|

. (6.1)

The working set distance is a symmetric metric. It can be used both to
identify the working set and as a way to discover a change in the working
set phase by a sudden increase.

• On the other hand, the change of phase is often discovered by the radical
increase in the cache misses or other changes in the model statistics of
current references gathered in online manner. Thus, the metric for indi-
cating current distance to the previous noticed working set phase can vary
greatly.

6.2 Concept Drift

A usual problem in real-world machine learning applications is the existence of
unknown hidden context that affects the examined concept or topic. A change
in the hidden context causes inexplicable alteration in examined concepts which
should be adapted to in learning progress. This process of, at least partially,
unpredictable change is generally called concept drift (CD). The change in the
hidden context may be repetitive. In addition, the change may appear abruptly
or gradually. Tsymbal [2004] gives an interesting survey about CD in machine
learning.

An example of CD with recurrent states is the behavior of consumers buying
products [Tsymbal, 2004]. The behavior alters due to daytime and time of the
month and year. However, also nonrecurring events, like opening a new shop
nearby, occur.

As pointed out in Section 2.2.1 the examination of CD can be separated in
three approaches [Tsymbal, 2004]: First, we may have some selected instances
as a current model for the concept. In practice this is executed with a fixed
or an adaptive size sliding window [e.g., Widmer and Kubat, 1996]. Second,
we could weight instances according to their freshness [e.g., Klinkenberg, 2004].
However, this approach is useful only if the learning method used can exploit
weighed instances. The third alternative is to have a set of basic concept de-
scriptions. The current concept description could be a mixture of these basic
ones. In particular the instance selection mentioned first, clearly has analogy
with tracking down the current working set in LR.

70 Chapter 6. Working Sets as Drifting Concepts

However, as Tsymbal [2004] mentions, in practice some differences can still
be observed in the type of CD. For example, CD may be virtual and consist
on seeing only part of the data set. In this case real CD on the data set
does not really exist, but similar phenomenon is observed. In practice, usually
experiments are done with virtual CD and it is not possible to differentiate it
from a real one. Another categorization is that the CD may be either gradual
or instant in nature. In gradual CD, the concept is changing little by little and
our model of the current concept is decaying slowly.

For CD we, as in Section 6.1, find the following tasks:

• First we should have some way to indicate and model the current concept.
We suggested the use of a training set fingerprint in [V]. The solution is
simply a generalization of histograms as suggested by Sebastião and Gama
[2007]. The fingerprint can consist on either a sample of the current model
or some of its precomputed statistics. However, traditionally we can often
use the very trained machine learning model as a fingerprint. The model is
itself a collection of statistics of the current sequence. One more thing to
notice is that extreme instances, the so called outliers, should not affect
our model too much. This problem is analogical to the robustness of
working set identification mentioned for LR.

• Change of concept is usually discovered by the radical decrease in the ac-
curacy of a model in predicting future instances [e.g., Widmer and Kubat,
1996]. Thus, as a metric indicating concept we could use the amount of
wrong predictions. However, a fingerprint can again be used for this [V].

• For the distance between concepts Widmer and Kubat [1996] present us
the computational learning theoretical relative error between the concept
sequences W1 and W2 as a drift extent :

δ(W1,W2) = |W1

⋃
W2| − |W1

⋂
W2|.

This can be used as a symmetric metric that indicates both the reoccur-
ring states and change in the current concept. Actually, this is just an
unnormalized case of the metric presented for LR in Equation 6.1 on the
previous page.

Traditionally, CD is considered as an online learning task, where the feedback
of the correction is given right after the prediction. Thus, instances are con-
sidered arriving an instance at a time. However, recently also getting instances

6.3. The Simple Generalized Problem 71

in batches for simplicity has been considered [Klinkenberg, 2004]. Furthermore,
[Gao et al., 2007] even present that CD should be considered in data stream
model.

6.3 The Simple Generalized Problem

As our aim is to find common elements in two different fields with their own
terminologies, our first task is to define the united terms for the common prob-
lem. We are not informed about any other similar attempts for the generalized
problem.

We simulate the online environment, similar to Klinkenberg [2004], with
input given in batches. Single input element is called an instance:

Problem Definition 2. Let D1, D2, D3, . . . be a sequence of (possibly i.i.d.)
distributions. Let x(i,1), x(i,2), x(i,3), . . . , x(i,mi) be a sequence of instances x ∈
X drawn from the distribution Di. The total input sequence is

x(1,1), x(1,2), x(1,3), . . . , x(1,m1),

x(2,1), x(2,2), x(2,3), . . . , x(2,m2),

A sequence x(i,·) is called batch i and it forms a concept.
Our task is, possibly in online fashion, to:

(A) Track the current distribution Di down and get its features, potentially even
the density function pi : X → [0, 1]. In other words, we need to answer the
questions “How important the instance is to our algorithm?” and “What
are the specific characteristics of the current distribution?”.

(B) Notice when the current distribution changes.

(C) Store the information we have about the current distribution. We call this
stored information a model of the concept. Also we need to decide if storing
is worthwhile.

(D) Decide if it is useful to restore some previous model. This is the case if the
situation reoccurs. In addition, we have to organize the restoring.

(E) Adapt the restored model or train a new one for the current distribution.

We mention the online environment in the definition with the intention of
restricting the processing time to at most constant per instance. It is also

72 Chapter 6. Working Sets as Drifting Concepts

worth noting that overlap between distributions during shifts is not allowed.
Implicitly in this definition, there are some often met characteristics of the
tasks. First, Task A often includes separating acceptable variance from real
distribution change [e.g., Widmer and Kubat, 1996]. Also the task can be
difficult to answer even in hindsight because we may never have the real density
function explicitly available. Thus, we are searching for the most efficient use of
this information regardless of the “true answer”. In addition we have to notice
that the Tasks C and D are useful only in case of reoccurring distributions.

We do not necessarily assume that instances in a batch i are drawn i.i.d.
from the distribution Di. Thus, in this definition, the probability of drawing
an instance may also relate to previous ones in the same batch. This, on the
other hand, allows for example gradual change or spatial locality in references.
Nevertheless, it could be acceptable to make the i.i.d. assumption inside batches
like Klinkenberg [2004] does. In any case, we need to note that between the
batches i.i.d. surely can not be assumed. This affects the evaluation of the
algorithms because techniques like cross-validation in CD should not be used.

We now introduce how the features of LR and CD correspond to the gener-
alized problem definition.

6.3.1 Relation to LR and CD

In the framework of LR, our instances x are computer program accesses. These
may be either memory address references for low level programming or element
key numbers for data structures. If the instance is in a working set of an
algorithm, the instance is probably referenced again soon. In addition, the
concepts relate to working sets or, better yet, to locality phases.

Now the Task A is about tracking down how relevant the instance is in
terms of working sets [e.g., Sleator and Tarjan, 1985]. The task could, however,
be simplified to finding out the most accessed instances by having a threshold
α ∈ [0, 1] and saying that x is in the working set if p(x) ≥ α. Thus, the problem
is simplified to asking if the instance is in the working set and we are just
tracking down a binary function pbin : X → {0, 1}. However, an exact nature
of working sets is not necessarily what we are searching for.

On the other hand, the Task B and possibly also Tasks C–E appear more
clearly in the framework of locality phases [Denning, 1980; Shen et al., 2007]. In
this framework, we are tracking down the phases where the input distribution
Di is in a constant state. Here it is usually assumed that the shift between
distributions is abrupt. Even if this is not the case, concentrating on the static
phases instead of the change may be a good practice.

6.3. The Simple Generalized Problem 73

Dhodapkar and Smith [2003] and Nagpurka et al. [2006] put forward and
experimentally examine some phase detection techniques. Nagpurka et al. [2006]
test multiple locality phase detection algorithms on virtual machines. Thus,
their findings of the usefulness are somewhat independent of the underlying
environment.

In the area of CD, the instances are either labeled or unlabeled examples and
we are interested in a couple of things. Task A includes, among others, tracking
down outliers and mislabeled examples in the machine learning data. Also with
the probability function we get a lot of information about the relevance of the
instance. Relevance can be defined by frequency or simply the importance of
right prediction for the example. A clear example of differing importances can
be found in spam mail filtering: deleting non-spam mail has much more effect
than leaving some spam [Delany et al., 2005].

The last Tasks C–E, on the other hand, include modifying the model to
better cope with current input distribution. These tasks have interest in some-
what broader area on machine learning. For example, areas such like transfer
learning [Pan and Yang, 2010; Taylor and Stone, 2009] and, to some extent,
meta-learning [Smith-Miles, 2009; Vilalta and Drissi, 2002] are specifically in-
terested in this. In the latter, we are usually interested in finding the best
machine learning algorithm, instead of the best model, for the current batch.

6.3.2 More Previous Work on the Problem

In this section, we discuss some previously introduced ways to solve Problem 2
on page 71 in the mentioned frameworks.

There is some previous work on finding connections between the areas of
machine learning and algorithms. At least Blum [1998] has applied the methods
of machine learning to online problems. However, he only narrowly discusses
drifting concepts.

Plenty of research has been done for all of the Tasks A–E separately. How-
ever, often only small part of the whole problem has been solved. Thus, many
applicable results in some other areas may not be relevant to the whole problem
solution because of different backgrounds. Especially the online environment is
a limitation here.

74 Chapter 6. Working Sets as Drifting Concepts

6.3.2.1 The Tasks

Let us now go through tasks one by one.

The Task A has received a lot of research: Finding frequent item sets is a
much studied problem [Agrawal and Srikant, 1994; Cheng et al., 2008; Goethals,
2002; Yahia et al., 2006], but in our setting it should be done in online fashion
like, e.g., Cheng et al. [2008] do. A very natural approach is to use a window
that is, a sequence of consequent instances. The window can be either a sliding
one [Widmer and Kubat, 1996] or one that takes steps of constant length. The
size of the window may be either static or dynamic. [Tsymbal, 2004] Also the
use of multiple windows has been shown to give more information about the
type of CD [Lazarescu et al., 2004]. The same approaches have been used for
LR problems also [Angelopoulos et al., 2008; Denning, 1968; Nagpurka et al.,
2006]. In addition, the discounting method mentioned in Section 5.3 is also
available [Gramacy et al., 2003].

As mentioned before, we have a couple of alternatives to tracking down
the current sequence properties. We can either select appropriate instances or
weight them according to their age or importance to the current concept [e.g.,
Gramacy et al., 2003]. The selection can be done with either using a window
[e.g., Widmer and Kubat, 1996] or more rarely more freely choosing a subset
of previously occurred instances. For example, Klinkenberg [2004] proposed
selecting those past batches that, roughly speaking, exhibit good prediction
accuracy on the current model. This way we can use the previously available
information about reoccurring concepts. In the information filtering domain
it seems like both instance selection methods overtake the weighting methods
in case of support vector machine learners in experiments Klinkenberg [2004].
However, the results may depend on the machine learning method and the data.

Task B concerns noticing the change. Klinkenberg and Renz [1998] divide the
indicators of CD to three categories: those that are based on the performance
measurements (e.g., accuracy) of the model, those that consider directly the
properties (e.g., features like size, complexity) of the model, and those that are
grounded only on the statistics of the input data. The two first ones rely on
the fact that the model at the same time identifies the current concept. The
classical, and not necessarily the optimal [Fung et al., 2004], way of measuring
the performance in CD is simply the accuracy. This corresponds roughly to,
e.g., counting the cache misses on LR [Gramacy et al., 2003]. The second one,
directly handling the model properties, is a highly model type specific solution.
For example, we can easily check the most important decision rules on rule
ensembles mentioned in Chapter 4. In LR we can similarly track down the

6.3. The Simple Generalized Problem 75

size and identity information of the working set model [Dhodapkar and Smith,
2002].

Nonetheless, we have a lot of different and generalizable solutions based on
the last possibility: the properties of the input data. One notable drawback
in this approach is that in many solutions we are implicitly assuming that the
instances x(i,·) are drawn i.i.d. from the distribution Di. As Klinkenberg [2004]
notes and we already mentioned in Section 6.3 this may not be wise. Never-
theless, the methods are clearly quite generalizable to both LR and CD. For
instance, Song et al. [2007] present a method for using statistical tests to solve
Task B. They are explicitly using the density estimation on this. On the other
hand, Castillo et al. [2003] show that Statistical Quality Control (SQC) methods
called P-Charts can also be used for CD detection. The main idea behind SQC
is to monitor the stability of one or more quality characteristics in a production
process. In case of a transition, the variance or average should be changing.

If we restrict Task A to finding the subset with density over some threshold
value, we get more possibilities. We can now solve Task B by finding if the
current batch does not seem to correspond to last noticed concept; that is, if
the current concept candidate A is distinct from the previous real one W . For
this we need a metric δ(A,W) ∼ P (A �W) for which a growing value indicates
a change of concept. In previous sections, we already had some proposals for
this by Dhodapkar and Smith [2002] and Widmer and Kubat [1996]. We will
return to the subject in the next section.

Widmer and Kubat [1996] suggest that in Task C the right time to store
the concept information is when the distribution has reached a stable state and
we have enough information about it. Their proposal is to use a metric δ to
indicate that a concept has been tracked, that is, when δ has continually low
values.

Task D addresses the storage of the current static concept model. In addi-
tion, the task covers restoring the model when the concept is discovered as a
reappearance. Clearly, the restoration should be done when we have noticed a
new batch starting [Widmer and Kubat, 1996]. One more subtask in this case
is to decide if restoring a previous model is useful at all. This is only the case
if the situation, the concept, reoccurs in a very similar way. If there is even
some distortion, it may be more beneficial to learn everything from scratch.
The distance metric δ may also be used for this.

76 Chapter 6. Working Sets as Drifting Concepts

Ali and Smith [2006] have conducted an interesting study on what kind of
learning algorithm types are good for which kind of data. With this kind of
information we could select the best algorithm type for current data if there
is no previously trained model. This way meta-learning is also related to the
problem.

In case of ensemble learning, Tasks D and E take somewhat different form.
We are not restoring any previous models as themselves, but instead reweighting
the models in the ensemble. There are plenty of examples of this [Kolter and
Maloof, 2007; Wang et al., 2003]. Nevertheless, it could be claimed that static
ensembles are themselves a way to cope with CD. Different base models in the
ensemble could be used for different types of input distribution. However, Ko
et al. [2008] show that dynamic ensemble weighting gives a better result than
choosing a single ensemble to cope with the whole input.

6.3.2.2 A Couple of Metrics

As has been seen, one way to solve the Tasks B and D and even E is to use
proper distance metric for concept candidates. Optimal metric would take into
account the instances, their frequencies and their order. The last one may be
very useful with spatial locality or any other similar patterns.

However, even the metrics based only on the instances might be enough. If
we restrict the problem like this, we are very close to the problem of two sample
test. In the two sample problem, we have we two instance sets and want to
know if they are drawn from the same distribution. This was our motivation to
solve part of the Task D, choosing the best previous model, with our MMDSel
algorithm in machine learning environment [V]. The key idea of our algorithm
is to store a fingerprint of each model in a pool and decide the best model for
restoring based on the fingerprints. In practice, we use samples of the training
data instances. Thus, we can compare these samples with the current batch
with suitable metrics like two sample tests.

Our algorithm used a two sample test metric called maximum mean discrep-
ancy (MMD) by Smola et al. [2007] and Gretton et al. [2007a,b] which runs
in quadratic time by default. However, with approximations we can compute
MMDSel in some common cases much faster, that is, roughly in linear time. In
addition to the efficiency, there are a couple of further points in the approach:
for example, the method represents an alternative measurement for selecting
the best classifier.

Somewhat similarly Pan et al. [2008, 2009] show how MMD can be used for
solving Task E. Namely they consider how regression models can be tuned if the

6.4. Further Generalizations 77

test distribution is slightly different from the training distribution. Other similar
change detection methods have also been presented. For example, Harchaoui
et al. [2009] present a technique based also on the so-called kernel functions.
Hido et al. [2008] study a so called change analysis where also the type of
change is tracked down.

Furthermore, Duesterwald et al. [2003] also study Task D on LR. They
are representing metrics derived from hardware counters on microarchitectures.
With the metrics, they are predicting future concepts. Naturally periodicity,
reoccurring concepts, is assumed in this context. They found out that differ-
ent metrics find the same periods and that their techniques really increase the
efficiency. Similarly Shen et al. [2007] study the problem of predicting locality
phases based on locality analysis and signal processing techniques. In addi-
tion, according to Ding and Zhong [2003] we can make somewhat more general
assumptions on a program based on its behavior on some input.

6.4 Further Generalizations

In the definition of Problem 2 on page 71, we were interested only in the steady
phases and assumed abrupt changes between them. The steady situation means
that the detected concept has reached a static state. The change states could
be treated as separate phases if needed.

However, if we want explicitly to model the gradual change we need transition
instances between the batches. This kind of transition has been presented, e.g.,
by Fung et al. [2004]. Thus, next we present a problem statement with a gradual
change of concepts.

Problem Definition 3. Let D1, D2, D3, . . . be a sequence of distributions. Let
x(i,1), x(i,2), x(i,3), . . . , x(i,mi) be a sequence of instances x ∈ X drawn from the
distribution Di. The total input sequence is

x(1,1), x(1,2), x(1,3), . . . , x(1,m1),

y(1,1), y(1,2), y(1,3), . . . , y(1,l1),

x(2,1), x(2,2), x(2,3), . . . , x(2,m2), . . . ,

where the y(i,j) ∈ X are transition instances that are defined as follows. Let
wi be the density function of distribution Di. The density function for y(i,j) is
defined by

w(y(i,j)) = (1− g(j))wi(y(i,j)) + g(j)wi+1(y(i,j)),

where the ending points of g : N → [0, 1] are bound by g(1) ≈ 0 and g(lj) ≈ 1.

78 Chapter 6. Working Sets as Drifting Concepts

Most of the problem definition and the tasks are the same as in the simpler
one. Redundancy is omitted. Roughly speaking, in the transition phase the
effect of distribution Di gradually descends while the one of Di+1 increases.
Often the function is simplified to g(j) = j/lj where lj is the length of the
examined batch [e.g., Fung et al., 2004]. A more general simplification would
be to assume g to be monotonically increasing. This could give us some more
power to use in the analysis.

In addition to gradual change, we have plenty of options for the problem
definition. For example, we can assume that between the static phases we have
just uniform noise from which no concepts can be found. Also the noise can
be present during the static phases, which should be noticed. In case of CD,
this noise could be, e.g., mislabeled instances. Like we noticed in Problem 2
on page 71, also normal variance can be seen as noise. For LR, in addition to
the variance, occasional nonrecurring accesses should maybe be left outside the
model.

6.5 On Locality of Reference and Drifting Con-
cepts

As discussed in this chapter, important analogy exists on two virtually sepa-
rate areas of theoretical computer science: namely drifting concepts [Tsymbal,
2004] of machine learning and locality of reference [Denning, 2005] in algorithm
analysis especially on lower level programming. In addition, nearly identical
problems have been solved in such areas like transfer learning [Pan and Yang,
2010], meta-learning [Vilalta and Drissi, 2002], and change analysis [Hido et al.,
2008]. Somehow the similarity should not come as a big surprise: the basic com-
mon factor in most cases is dynamically changing input and tracking it down.
This, however, is something that is natural to find in multiple areas.

Nevertheless, the subjects are quite distant in many ways: In machine learn-
ing we often consider abstract methods that are distinguished from the underly-
ing hardware and low level solutions. On the other hand study of LR is usually
present exactly on the low level algorithm analysis even if it is also often plat-
form independent. Nevertheless, common work has not, to our knowledge, been
introduced save the mentioned survey by Blum [1998].

What is our motivation for generating such a united framework that includes
all the problems? An example of benefits for this kind of knowledge is our
algorithm MMDSel [V] for selecting machine learning models. The basic idea

6.5. On Locality of Reference and Drifting Concepts 79

of using model fingerprints came from solutions like the one by Dhodapkar and
Smith [2002]. They present a method for identifying the current concept, the
working set, by comparing their hash function values. Thus, even if the solutions
in one framework were not directly applicable to another one, the philosophy
behind them could be. In addition, it could be assumed that the more abstract
machine learning methods could in some cases directly be applicable to the
locality of reference problems.

All in all, in this chapter we build some foundation for the bridge between
these various areas of study by proposing a shared problem definition. Even
if the research on some problems, namely in locality of reference, is not very
active or at least changing its shape, we hope that this knowledge of similarities
would result in some innovative solutions.

80 Chapter 6. Working Sets as Drifting Concepts

Chapter 7

Conclusions

In this thesis, we have studied various methods that cope with dynamically
changing input. In machine learning, imperfect information about the world is
present by definition; that is exactly the reason why learning is needed. However,
in addition we addressed unknown changes in algorithmic analysis.

At first we introduced some background knowledge about general optimiza-
tion problems. These are often used in different machine learning methods. We
also discussed the regularization of optimization, which plays an important role
in the quality of the optimization result. A method [I] for efficiently solving
lasso type regularized support vector machines was introduced.

Then we introduced how suitable weights for a multi-target rule ensemble
can be found with gradient directed optimization [II, III]. In the multi-target
framework, we are predicting multiple targets simultaneously instead of a single
one. With this strategy, we might be able to get both smaller and more accurate
machine learning models. We presented both a theoretical and an experimental
evaluation of this Fire method and gave guidelines for its parameter values.

There are some interesting ways to further develop the ensemble method.
First of all, we already know ways to increase the robustness of the method by
using the solutions introduced by RuleFit. In addition, especially on multi-
target prediction it would be very interesting to try out how random subspace
selection on target attributes increases the diversity of base models. That is, in
addition to selecting the descriptive attributes during the induction, as random
forests do, we could do the same for target attributes. This solution is not
limited to rule ensemble methods; it could first be tried to multi-target random
forests.

82 Chapter 7. Conclusions

After this, we moved to somewhat different area of locality of reference and
binary search trees. We introduced a method, Wsplay, that aims to adapt
itself wisely to the properties of the input [IV]. As a basis, it uses the adaptive
binary search tree method of splay trees. The main modification is that the
amount of costly rotations is decreased if they do not seem to benefit us.

In the last part of the thesis, we examined two distinct areas of computer
science in a survey like manner and tracked down similarities between them.
In fact, we presented a general framework that contains the essential parts of
problems called concept drift and locality of reference. Our hope is that the brief
examination of varying solutions would bring more knowledge to the researchers
in both the fields and end up with fruitful new ideas.

On the whole, in this thesis we introduced and deeply examined a method
for accurate but still interpretable prediction of multi-target data. In addition,
we gave some solutions to the question of how dynamic online input can be
coped with.

Bibliography

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associ-
ation rules in large databases. In Jorge B. Bocca, Matthias Jarke, and Carlo
Zaniolo, editors, Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB 1994), pages 487–499, 1994. Morgan Kaufmann,
San Francisco, CA.

Susanne Albers. Online algorithms. In Dina Goldin, Scott A. Smolka, and
Peter Wegner, editors, Interactive Computation: The New Paradigm, pages
143–164. Springer, Berlin/Heidelberg, Germany, 2006.

Susanne Albers and Marek Karpinski. Randomized splay trees: Theoretical and
experimental results. Information Processing Letters, 81(4):213–221, 2002.

Susanne Albers, Lene M. Favrholdt, and Oliver Giel. On paging with locality
of reference. Journal of Computer and System Sciences, 70(2):145–175, 2005.

Shawkat Ali and Kate A. Smith. On learning algorithm selection for classifica-
tion. Applied Soft Computing, 6(2):119–138, 2006.

Spyros Angelopoulos, Reza Dorrigiv, and Alejandro López-Ortiz. List up-
date with locality of reference. In Eduardo Laber, Claudson Bornstein,
Loana Nogueira, and Luerbio Faria, editors, Proceedings of the Eighth Latin
American Theoretical Informatics Symposium (LATIN 2008), volume 4957 of
LNCS, pages 399–410, 2008. Springer, Berlin/Heidelberg, Germany.

Annalisa Appice and Sašo Džeroski. Stepwise induction of multi-target model
trees. In Joost N. Kok, Jacek Koronacki, Ramon Lopez de Mantaras, Stan
Matwin, Dunja Mladenič, and Andrzej Skowron, editors, Proceedings of the
18th European Conference on Machine Learning (ECML 2007), volume 4701
of LNCS, pages 502–509, 2007. Springer, Berlin/Heidelberg, Germany.

84 Bibliography

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex
multi-task feature learning. Machine Learning, 73(3):243–272, 2008.

Ghada Hany Badr and B. John Oommen. Self-adjusting of ternary search tries
using conditional rotations and randomized heuristics. The Computer Jour-
nal, 48(2):200–219, 2005.

Rudolf Bayer. Symmetric binary B-trees: Data structure and maintenance
algorithms. Acta Informatica, 1(4):290–306, 1972.

Jim Bell and Gopal Gupta. An evaluation of self-adjusting binary search tree
techniques. Software: Practice and Experience, 23(4):369–382, 1993.

P. Berkhin. A survey of clustering data mining techniques. In Jacob Kogan,
Charles Nicholas, and Marc Teboulle, editors, Grouping Multidimensional
Data, pages 25–71. Springer, Berlin/Heidelberg, Germany, 2006.

Steffen Bickel, Jasmina Bogojeska, Thomas Lengauer, and Tobias Scheffer.
Multi-task learning for HIV therapy screening. In William W. Cohen, Andrew
McCallum, and Sam T. Roweis, editors, Proceedings of the 25th International
Conference on Machine Learning (ICML 2008), pages 56–63, 2008. ACM,
New York, NY.

Hendrik Blockeel. Top-down Induction of First Order Logical Decision Trees.
PhD thesis, Department of Computer Science, Katholieke Universiteit Leu-
ven, Leuven, Belgium, 1998.

Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical
decision trees. Artificial Intelligence, 101(1-2):285–297, 1998.

Hendrik Blockeel and Jan Struyf. Efficient algorithms for decision tree cross-
validation. Journal of Machine Learning Research, 3:621–650, 2002.

Hendrik Blockeel, Luc De Raedt, and Jan Ramon. Top-down induction of clus-
tering trees. In Jude W. Shavlik, editor, Proceedings of the 15th International
Conference on Machine Learning (ICML 1998), pages 55–63, 1998. Morgan
Kaufmann, San Francisco, CA.

Avrim Blum. On-line algorithms in machine learning. In Amos Fiat and Gerhard
Woeginger, editors, Online Algorithms: The State of the Art, volume 1442 of
LNCS, Chapter 14. Springer, 1998.

85

Prosenjit Bose, Karim Doüıeb, Vida Dujmović, and John Howat. Layered
working-set trees. In Alejandro López-Ortiz, editor, Proceedings of the Ten-
thth Latin American Theoretical Informatics Symposium (LATIN 2010), vol-
ume 6034 of LNCS, pages 686–696, 2010. Springer, Berlin/Heidelberg, Ger-
many.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Mihai Bădoiu, Richard Cole, Erik D. Demaine, and John Iacono. A unified ac-
cess bound on comparison-based dynamic dictionaries. Theoretical Computer
Science, 382(2):86–96, 2007.

Lucian Buşoniu, Robert Babuška, and Bart De Schutter. A comprehensive sur-
vey of multiagent reinforcement learning. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 38(2):156–172,
2008.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

Gladys Castillo, João Gama, and Pedro Medas. Adaptation to drifting concepts.
In Fernando Moura-Pires and Salvador Abreu, editors, Proceedings of the
Tenth Portuguese Conference on Artificial Intelligence (EPIA 2003), volume
2902 of LNCS, pages 279–293. Springer, Berlin/Heidelberg, Germany, 2003.

Olivier Chapelle. Training a support vector machine in the primal. Neural
Computation, 19(5):1155–1178, 2007.

Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised
Learning. MIT Press, Cambridge, MA, 2010.

Olivier Chapelle, Pannagadatta Shivaswamy, Srinivas Vadrevu, Kilian Wein-
berger, Ya Zhang, and Belle Tseng. Boosted multi-task learning. Machine
Learning, 85(1):149–173, 2011.

Robert P. Cheetham, B. John Oommen, and David T.H. Ng. Adaptive struc-
turing of binary search trees using conditional rotations. IEEE Transactions
on Knowledge and Data Engineering, 5(4):695–704, 1993.

James Cheng, Yiping Ke, and Wilfred Ng. A survey on algorithms for mining
frequent itemsets over data streams. Knowledge and Information Systems, 16
(1):1–27, 2008.

86 Bibliography

Richard Cole. On the dynamic finger conjecture for splay trees. Part II: The
proof. SIAM Journal on Computing, 30(1):44–85, 2000.

Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic
finger conjecture for splay trees. Part I: Splay sorting log n-block sequences.
SIAM Journal on Computing, 30(1):1–43, 2000.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, Cambridge, MA, third edition,
2009.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learn-
ing, 20(3):273–297, 1995.

Sarah Jane Delany, Pádraig Cunningham, Alexey Tsymbal, and Lorcan
Coyle. A case-based technique for tracking concept drift in spam filtering.
Knowledge-Based Systems, 18(4–5):187–195, 2005.

Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Patraşcu. Dynamic
optimality—almost. SIAM Journal on Computing, 37(1):240–251, 2007.

Krzysztof Dembczyński, Wojciech Kot lowski, and Roman S lowiński. Solving
regression by learning an ensemble of decision rules. In Leszek Rutkowski,
Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Pro-
ceedings of the Ninth International Conference on Artificial Intelligence and
Soft Computing (ICAISC 2008), volume 5097 of LNCS, pages 533–544, 2008a.
Springer, Berlin/Heidelberg, Germany.

Krzysztof Dembczyński, Wojciech Kot lowski, and Roman S lowiński. Maximum
likelihood rule ensembles. In William W. Cohen, Andrew McCallum, and
Sam T. Roweis, editors, Proceedings of the 25th International Conference on
Machine Learning (ICML 2008), pages 224–231, 2008b. ACM, New York,
NY.

Damjan Demšar, Marko Debeljak, Claire Lavigne, and Sašo Džeroski. Mod-
elling pollen dispersal of genetically modified oilseed rape within the field. In
Abstracts of the 90th ESA Annual Meeting, page 152, 2005. The Ecological
Society of America, Montreal, Canada.

Damjan Demšar, Sašo Džeroski, Thomas Larsen, Jan Struyf, Jørgen Axelsen,
Marianne Bruus Pedersen, and Paul Henning Krogh. Using multi-objective
classification to model communities of soil microarthropods. Ecological Mod-
elling, 191(1):131–143, 2006.

87

Janez Demšar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1–30, 2006.

Peter J. Denning. The working set model for program behavior. Communica-
tions of the ACM, 11(5):323–333, 1968.

Peter J. Denning. Working sets past and present. IEEE Transactions on Soft-
ware Engineering, 6(1):64–84, 1980.

Peter J. Denning. The locality principle. Communications of the ACM, 48(7):
19–24, 2005.

Jonathan C. Derryberry and Daniel D. Sleator. Skip-splay: Toward achiev-
ing the unified bound in the BST model. In Frank K. H. A. Dehne, Ma-
rina L. Gavrilova, Jörg-Rüdiger Sack, and Csaba D. Tóth, editors, Proceed-
ings of the 11th International Symposium on Algorithms and Data Struc-
tures (WADS 2009), volume 5664 of LNCS, pages 194–205, 2009. Springer,
Berlin/Heidelberg, Germany.

Ashutosh S. Dhodapkar and James E. Smith. Managing multi-configuration
hardware via dynamic working set analysis. In Proceedings of the 29th Annual
International Symposium on Computer Architecture (ISCA 2002), pages 233–
244, 2002. IEEE Computer Society, Los Alamitos, CA.

Ashutosh S. Dhodapkar and James E. Smith. Comparing program phase detec-
tion techniques. In Proceedings of the 36th Annual International Symposium
on Microarchitecture (MICRO 2003), pages 217–227, 2003. IEEE Computer
Society, Los Alamitos, CA.

Thomas Dietterich. Ensemble methods in machine learning. In Josef Kittler
and Fabio Roli, editors, Proceedings of the First International Workshop on
Multiple Classifier Systems (MCS 2000), volume 1857 of LNCS, pages 1–15,
2000. Springer, Berlin/Heidelberg, Germany.

Chen Ding and Yutao Zhong. Predicting whole-program locality through reuse
distance analysis. ACM SIGPLAN Notices, 38(5):245–257, 2003.

David L. Donoho and Jain M. Johnstone. Ideal spatial adaptation by wavelet
shrinkage. Biometrika, 81(3):425–455, 1994.

Reza Dorrigiv and Alejandro López-Ortiz. On certain new models for paging
with locality of reference. In Shin ichi Nakano and Md. Saidur Rahman,

88 Bibliography

editors, Proceedings of the Second International Workshop on Algorithms and
Computation (WALCOM 2008), volume 4921 of LNCS, pages 200–209, 2008.
Springer, Berlin/Heidelberg, Germany.

Evelyn Duesterwald, Călin Caşcaval, and Sandhya Dwarkadas. Characteriz-
ing and predicting program behavior and its variability. In Proceedings of
the 12th International Conference on Parallel Architectures and Compilation
Techniques (PACT 2003), pages 220–231, 2003. IEEE Computer Society, Los
Alamitos, CA.

Sašo Džeroski, Ljupčo Todorovski, and Hendrik Blockeel. Relational ranking
with predictive clustering trees. In Proceedings of the Workshop on Active
Mining (in ICDM 2002), pages 9–15, 2002. IEEE Computer Society, Los
Alamitos, CA.

Sašo Džeroski, Andrej Kobler, Valentin Gjorgjioski, and Panče Panov. Using
decision trees to predict forest stand height and canopy cover from LANSAT
and LIDAR data. In Klaus Tochtermann and Arno Scharl, editors, Proceed-
ings of the 20th International Conference on Informatics for Environmental
Protection (EnviroInfo 2006), pages 125–133, 2006. Shaker, Achen, Germany.

Sašo Džeroski, Damjan Demšar, and Jasna Grbović. Predicting chemical pa-
rameters of river water quality from bioindicator data. Applied Intelligence,
13(1):7–17, 2000.

Sašo Džeroski, Nathalie Colbach, and Antoine Messéan. Analysing the effect of
field character on gene flow between oilseed rape varieties and volunteers with
regression trees. In Antoine Messéan, editor, Proceedings of the Second Inter-
national Conference on Co-existence between GM and non-GM based Agri-
cultural Supply Chains, pages 207–211, 2005. Agropolis Productions, Mont-
pellier, France.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least
angle regression. Annals of Statistics, 32(2):407–499, 2004.

André Elisseeff and Jason Weston. A kernel method for multi-labelled classifi-
cation. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani,
editors, Advances in Neural Information Processing Systems (NIPS 2001),
pages 681–687, 2001. MIT Press, Cambridge, MA.

Peter Flach and Nada Lavrač. Rule induction. In Michael R. Berthold and
David J. Hand, editors, Intelligent Data Analysis, pages 229–267. Springer,
Berlin/Heidelberg, Germany, 2003. Second edition.

89

Steven A. Frank and Arthur Asuncion. UCI machine learning repository, 2011.
URL http://archive.ics.uci.edu/ml/.

Jerome H. Friedman and Bogdan E. Popescu. Importance sampled learning
ensembles. Technical report, Stanford University, Stanford, CA, 2003.

Jerome H. Friedman and Bogdan E. Popescu. Gradient directed regularization
for linear regression and classification. Technical report, Stanford University,
Stanford, CA, 2004.

Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via rule en-
sembles. Technical report, Stanford University, Stanford, CA, 2005.

Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via rule en-
sembles. The Annals of Applied Statistics, 2(3):916–954, 2008.

Gabriel Pui Cheong Fung, Jeffrey Xu Yu, and Hongjun Lu. Classifying text
streams in the presence of concept drifts. In Honghua Dai, Ramakrishnan
Srikant, and Chengqi Zhang, editors, Proceedings of the Eighth Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD 2004), vol-
ume 3056 of LNCS, pages 373–383. Springer, Berlin/Heidelberg, Germany,
2004.

Martin Fürer. Randomized splay trees. In Proceedings of the Tenth Annual Sym-
posium on Discrete Algorithms (SODA 1999), pages 903–904, 1999. SIAM,
Philadelphia, PA.

Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Menćıa, and Klaus
Brinker. Multilabel classification via calibrated label ranking. Machine Learn-
ing, 73(2):133–153, 2008.

Jing Gao, Wei Fan, and Jiawei Han. On appropriate assumptions to mine data
streams: Analysis and practice. In Proceedings of the Seventh International
Conference on Data Mining (ICDM 2007), pages 143–152, 2007. IEEE Com-
puter Society, Washington, DC.

Valentin Gjorgjioski, Sašo Džeroski, and Matt White. Clustering analysis of
vegetation data. Technical Report 10065, Jožef Stefan Institute, Ljubljana,
Slovenia, 2008.

Bart Goethals. Survey on frequent pattern mining. Technical report, HIIT Basic
Research Unit, University of Helsinki, Helsinki, Finland, 2002.

http://archive.ics.uci.edu/ml/

90 Bibliography

Robert B. Gramacy, Manfred K. Warmuth, Scott A. Brandt, and Ismail Ari.
Adaptive caching by refetching. In Suzanna Becker, Sebastian Thrun, and
Klaus Obermayer, editors, Advances in Neural Information Processing Sys-
tems (NIPS 2002), pages 1465–1472, 2003. MIT Press, Cambridge, MA.

Yves Grandvalet and Stéphane Canu. Outcomes of the equivalence of adaptive
ridge with least absolute shrinkage. In Michael S. Kearns, Sara A. Solla, and
David A. Cohn, editors, Advances in Neural Information Processing Systems
(NIPS 1998), pages 445–451, 1999. Morgan Kaufmann, San Francisco, CA.

Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bernhard Schölkopf, and
Alexander J. Smola. A kernel method for the two-sample-problem. In Bern-
hard Schölkopf, John C. Platt, and Thomas Hoffman, editors, Advances in
Neural Information Processing Systems (NIPS 2006), pages 513–520, 2007a.
MIT Press, Cambridge, MA.

Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bernhard Schölkopf, and
Alexander J. Smola. A kernel approach to comparing distributions. In Pro-
ceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007),
pages 1637–1641, 2007b. AAAI Press, Menlo Park, CA.

Zaid Harchaoui, Francis Bach, and Eric Moulines. Kernel change-point analysis.
In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, edi-
tors, Advances in Neural Information Processing Systems (NIPS 2008), pages
609–616, 2009. MIT Press, Cambridge, MA.

Steffen Heinz and Justin Zobel. Performance of data structures for small sets
of strings. Australian Computer Science Communications, 24(1):87–94, 2002.

Shohei Hido, Tsuyoshi Idé, Hisashi Kashima, Harunobu Kubo, and Hirofumi
Matsuzawa. Unsupervised change analysis using supervised learning. In
Takashi Washio, Einoshin Suzuki, Kai Ting, and Akihiro Inokuchi, editors,
Proceedings of the 12th Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD 2008), volume 5012 of LNCS, pages 148–159. Springer,
Berlin/Heidelberg, Germany, 2008.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sun-
dararajan. A dual coordinate descent method for large-scale linear SVM. In

91

Andrew McCallum and Sam Roweis, editors, Proceedings of the 25th Interna-
tional Conference on Machine Learning (ICML 2008), pages 408–415, 2008.
ACM, New York, NY.

Peter J. Huber. Robust estimation of a location parameter. The Annals of
Mathematical Statistics, 35(1):73–101, 1964.

A. Hyvärinen and E. Oja. Independent component analysis: algorithms and
applications. Neural Networks, 13(4–5):411–430, 2000.

John Iacono. Alternatives to splay trees with O(log n) worst-case access times.
In Proceedings of the 12th Annual Symposium on Discrete Algorithms (SODA
2001), pages 516–522, 2001a. SIAM, Philadelphia, PA.

John Iacono. Distribution-sensitive data structures. PhD thesis, Rutgers, The
State University of New Jersey, New Brunswick, New Jersey, 2001b.

Nitin Indurkhya and Sholom M. Weiss. Solving regression problems with rule-
based ensemble classifiers. In Proceedings of the Seventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD 2001),
pages 287–292, 2001. ACM, New York, NY.

Florian Jarre and Stephen Vavasis. Convex optimization. In Mikhail J. Atallah
and Marina Blanton, editors, Algorithms and Theory of Computation Hand-
book, second edition, Volume 1: General Concepts and Techniques, Chap-
man & Hall/CRC Applied Algorithms and Data Structures series, chapter 32.
Chapman and Hall/CRC, 2010.

Minwoo Jeong and Gary Geunbae Lee. Multi-domain spoken language under-
standing with transfer learning. Speech Communication, 51(5):412–424, 2009.

Christian Kampichler, Sašo Džeroski, and Ralf Wieland. Application of machine
learning techniques to the analysis of soil ecological data bases: relationships
between habitat features and collembolan community characteristics. Soil
Biology and Biochemistry, 32(2):197–209, 2000.

Aram Karalič. Employing linear regression in regression tree leaves. In B. Neu-
mann, editor, Proceedings of the Tenth European Conference on Artificial
intelligence (ECAI 1992), pages 440–441, 1992. John Wiley & Sons, New
York, NY.

Aram Karalič and Ivan Bratko. First order regression. Machine Learning, 26
(2-3):147–176, 1997.

92 Bibliography

Ralf Klinkenberg. Learning drifting concepts: Example selection vs. example
weighting. Intelligent Data Analysis, 8(3):281–300, 2004.

Ralf Klinkenberg and Ingrid Renz. Adaptive information filtering: Learning in
the presence of concept drifts. In Notes of the Workshop on Learning for Text
Categorization (in ICML/AAAI-98), pages 33–40, 1998. AAAI Press, Menlo
Park, CA.

Albert H.R. Ko, Robert Sabourin, and Alceu Souza Jr. Britto. From dynamic
classifier selection to dynamic ensemble selection. Pattern Recognition, 41(5):
1718–1731, 2008.

Dragi Kocev, Celine Vens, Jan Struyf, and Sašo Džeroski. Ensembles of multi-
objective decision trees. In Joost N. Kok, Jacek Koronacki, Ramon Lopez
de Mantaras, Stan Matwin, Dunja Mladenič, and Andrzej Skowron, ed-
itors, Proceedings of the 18th European Conference on Machine Learn-
ing (ECML 2007), volume 4701 of LNCS, pages 624–631, 2007. Springer,
Berlin/Heidelberg, Germany.

J. Zico Kolter and Marcus A. Maloof. Dynamic weighted majority: An ensemble
method for drifting concepts. Journal of Machine Learning Research, 8:2755–
2790, 2007.

Tony W. Lai and Derick Wood. Adaptive heuristics for binary search trees and
constant linkage cost. In Proceedings of the Second Annual Symposium on
Discrete Algorithms (SODA 1991), pages 72–77, 1991. SIAM, Philadelphia,
PA.

Mihai M. Lazarescu, Svetha Venkatesh, and Hung H. Bui. Using multiple win-
dows to track concept drift. Intelligent Data Analysis, 8(1):29–59, 2004.

Eric K. Lee and Charles U. Martel. When to use splay trees. Software: Practice
and Experience, 37(15):1559–1575, 2007.

Hsuan-Tien Lin, Chih-Jen Lin, and Ruby Weng. A note on Platt’s probabilistic
outputs for support vector machines. Machine Learning, 68(3):267–276, 2007.

Qi Liu, Qian Xu, Vincent W. Zheng, Hong Xue, Zhiwei Cao, and Qiang Yang.
Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico
study. BMC Bioinformatics, 11(1):181–196, 2010.

93

Karim Lounici, Massimiliano Pontil, Alexandre B. Tsybakov, and Sara A. van de
Geer. Taking advantage of sparsity in multi-task learning. In Proceedings of
the 22nd Conference on Learning Theory (COLT 2009), 2009.

Hamed Masnadi-Shirazi and Nuno Vasconcelos. Risk minimization, probability
elicitation, and cost-sensitive SVMs. In Johannes Fürnkranz and Thorsten
Joachims, editors, Proceedings of the 27th International Conference on Ma-
chine Learning (ICML 2010), pages 759–766, 2010. Omnipress, Madison, WI.

Ryszard S. Michalski. On the quasi-minimal solution of the general covering
problem. In Proceedings of the Fifth International Symposium on Information
Processing (FCIP 1969), volume A3, Switching Circuits, pages 125–128, 1969.
Bled, Yugoslavia.

S. Muthukrishnan. Data streams: Algorithms and applications. Foundations
and Trends in Theoretical Computer Science, 1(2), 2005.

Priya Nagpurka, Michael Hind, Chandra Krintz, Peter F. Sweeney, and V.T.
Rajan. Online phase detection algorithms. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO 2006), pages 111–
123, 2006. IEEE Computer Society, Los Alamitos, CA.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans-
actions on Knowledge and Data Engineering, 22(10):1345–1359, 2010.

Sinno Jialin Pan, James T. Kwok, and Qiang Yang. Transfer learning via dimen-
sionality reduction. In Dieter Fox and Carla P. Gomes, editors, Proceedings
of the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008), pages
677–682, 2008. AAAI Press, Menlo Park, CA.

Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain
adaptation via transfer component analysis. In Craig Boutilier, editor, Pro-
ceedings of the 21st International Joint Conference on Artifical Intelligence
(IJCAI 2009), pages 1187–1192, 2009. Morgan Kaufmann, San Francisco,
CA.

Ben Pfaff. Performance analysis of BSTs in system software. ACM SIGMET-
RICS Performance Evaluation Review, 32(1):410–411, 2004.

Ross J. Quinlan. Learning with continuous classes. In A. Adams and L. Sterling,
editors, Proceedings of the Fifth Australian Joint Conference on Artificial
Intelligence (AI 1992), pages 343–348, 1992. World Scientific, Singapore.

94 Bibliography

Alain Rakotomamonjy, Rémi Flamary, Gilles Gasso, and Stéphane Canu. `p
– `q penalty for sparse linear and sparse multiple kernel multitask learning.
IEEE Transactions on Neural Networks, 22(8):1307–1320, 2011.

Mark Schmidt, Glenn Fung, and Rómer Rosales. Fast optimization methods
for L1 regularization: A comparative study and two new approaches. In
Joost N. Kok, Jacek Koronacki, Ramon Lopez de Mantaras, Stan Matwin,
Dunja Mladenič, and Andrzej Skowron, editors, Proceedings of the 18th Euro-
pean Conference on Machine Learning (ECML 2007), volume 4701 of LNCS,
pages 286–297, 2007. Springer, Berlin/Heidelberg, Germany.

Martin Scholz and Ralf Klinkenberg. Boosting classifiers for drifting concepts.
Intelligent Data Analysis, Special Issue on Knowledge Discovery from Data
Streams, 11(1):3–28, 2007.

Raquel Sebastião and João Gama. Change detection in learning histograms from
data streams. In José Neves, Manuel Filipe Santos, and José Machado, edi-
tors, Proceedings of the 14th Portuguese Conference on Artificial Intelligence
(EPIA 2007), volume 4874 of LNCS, pages 112–123. Springer, 2007.

Raimund Seidel and Cecilia Aragon. Randomized search trees. Algorithmica,
16(4):464–497, 1996.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal es-
timated sub-gradient solver for SVM. In Zoubin Ghahramani, editor, Pro-
ceedings of the 24th International Conference on Machine Learning (ICML
2007), pages 807–814, 2007. ACM, New York, NY.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

Xipeng Shen, Yutao Zhong, and Chen Ding. Predicting locality phases for dy-
namic memory optimization. Journal of Parallel and Distributed Computing,
67(7):783–796, 2007.

Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. Journal of the ACM, 32(3):652–686, 1985.

Kate A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for al-
gorithm selection. ACM Computing Surveys, 41(1):6:1–6:25, 2009.

95

Alexander J. Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A
Hilbert space embedding for distributions. In Marcus Hutter, Rocco A. Serve-
dio, and Eiji Takimoto, editors, Proceedings of the 18th International Con-
ference on Algorithmic Learning Theory (ALT 2007), volume 4754 of LNCS,
pages 13–31, 2007. Springer, Berlin/Heidelberg, Germany.

Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. Statistical
change detection for multi-dimensional data. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2007), pages 667–676, 2007. ACM, New York, NY.

Daniela Stojanova. Estimating forest properties from remotely sensed data by
using machine learning. Master’s thesis, Jožef Stefan International Postgrad-
uate School, Ljubljana, Slovenia, 2009.

Jan Struyf and Sašo Džeroski. Constraint based induction of multi-objective
regression trees. In F. Bonchi and J. Boulicaut, editors, Proceedings
of the Fourth International Workshop on Knowledge Discovery in Induc-
tive Databases (KDID 2005), volume 3933 of LNCS, pages 222–233, 2006.
Springer, Berlin/Heidelberg, Germany.

Ashok Subramanian. An explanation of splaying. Journal of Algorithms, 20(3):
512–525, 1996.

Einoshin Suzuki, Masafumi Gotoh, and Yuta Choki. Bloomy decision tree for
multi-objective classification. In Luc De Raedt and Arno Siebes, editors,
Proceedings of the Fifth European Conference on Principles of Data Mining
and Knowledge Discovery (PKDD 2001), volume 2168 of LNCS, pages 436–
447, 2001. Springer, Berlin/Heidelberg, Germany.

Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10:1633–1685,
2009.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

Alexey Tsymbal. The problem of concept drift: definitions and related work.
Technical Report TCD-CS-2004-15, Department of Computer Science, Trinity
College Dublin, Ireland, 2004.

96 Bibliography

Vladimir N. Vapnik. An overview of statistical learning theory. IEEE Transac-
tions on Neural Networks, 10(5):988–999, 1999.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer,
Berlin/Heidelberg, Germany, second edition, 2000.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-
learning. Artificial Intelligence Review, 18(2):77–95, 2002.

Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting
data streams using ensemble classifiers. In Lise Getoor, Ted E. Senator,
Pedro Domingos, and Christos Faloutsos, editors, Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2003), pages 226–235, 2003. ACM, New York, NY.

Yong Wang and Ian H. Witten. Inducing model trees for continuous classes.
In Maarten van Someren and Gerhard Widmer, editors, Poster Papers of
the Ninth European Conference on Machine Learning (ECML 1997), pages
128–137, 1997. University of Economics, Faculty of Informatics and Statistics,
Prague, Czech Republic.

Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift
and hidden contexts. Machine Learning, 23(1):69–101, 1996.

Hugh E. Williams, Justin Zobel, and Steffen Heinz. Self-adjusting trees in
practice for large text collections. Software: Practice and Experience, 31(10):
925–939, 2001.

S. Wold, A. Ruhe, H. Wold, and W. J. Dunn III. The collinearity problem
in linear regression. the partial least squares (PLS) approach to generalized
inverses. SIAM Journal on Scientific and Statistical Computing, 5(3):735–743,
1984.

Rui Xu and Donald Wunsch II. Survey of clustering algorithms. IEEE Trans-
actions onNeural Networks, 16(3):645–678, 2005.

S. Ben Yahia, T. Hamrouni, and E. Mephu Nguifo. Frequent closed item-
set based algorithms: a thorough structural and analytical survey. ACM
SIGKDD Explorations Newsletter, 8(1):93–104, 2006.

Bernard Ženko. Learning predictive clustering rules. PhD thesis, University of
Ljubljana, Faculty of computer and information science, Ljubljana, Slovenia,
2007.

97

Bernard Ženko and Sašo Džeroski. Learning classification rules for multiple
target attributes. In Takashi Washio, Einoshin Suzuki, Kai Ming Ting, and
Akihiro Inokuchi, editors, Proceedings of the 12th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD 2008), volume 5012 of
LNCS, pages 454–465, 2008. Springer, Berlin/Heidelberg, Germany.

Bernard Ženko, Sašo Džeroski, and Jan Struyf. Learning predictive clustering
rules. In Francesco Bonchi and Jean-François Boulicaut, editors, Revised se-
lected and invited papers of the Fourth International Workshop on Knowledge
Discovery in Inductive Databases (KDID 2005), volume 3933 of LNCS, pages
110–121, 2006. Springer, Berlin/Heidelberg, Germany.

Ji Zhu, Saharon Rosset, Trevor Hastie, and Rob Tibshirani. 1-norm support vec-
tor machines. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf,
editors, Advances in Neural Information Processing Systems (NIPS 2003),
2004. MIT Press, Cambridge, MA.

δευτε πρoς µε παντες oι κoπιωντες και

πεφoρτισµενoι καγω αναπαυσω υµας

	Abstract
	Preface
	Contents
	List of Publications
	Introduction
	The Structure of the Thesis
	Summary of the Main Contribution

	Background
	Areas of Machine Learning
	Error and Loss Functions
	Multi-Target Loss
	Model Families for Machine Learning

	Dynamic Input
	Concept Drift in Online Learning
	Locality of Reference on Data Structures

	Regularization in Convex Optimization
	Regularization
	Gradient Directed Optimization
	Efficient Regularization in Support Vector Machines
	Background
	Reweighting Ridge Regularized SVM

	Rule Based Ensembles
	On the Background of the Rule Ensembles
	Rule Ensembles in Single Target Regression
	Learning Rule Based Ensembles for Multi-Target Regression
	Generation of Base Models
	Optional Linear Terms
	Gradient Directed Weight Optimization

	Empirical Evaluation
	Experimental Setting
	Results
	Analysis of Normalization and the Use of Linear Terms

	Conclusions on the Multi-Target Rule Ensemble Method

	Binary Search Trees in Online Context
	Splay Trees in Theory
	Practical Efficiency of Splay Trees
	Conditional Adaptation of a BST
	A Dynamic Version of Wsplay

	Working Sets as Drifting Concepts
	Working Sets and Locality Phases
	Concept Drift
	The Simple Generalized Problem
	Relation to LR and CD
	More Previous Work on the Problem

	Further Generalizations
	On Locality of Reference and Drifting Concepts

	Conclusions
	Bibliography

