
A Secure OSGi Environment
for Untrusted Web Applications

Timo Aho
Tampere University of

Technology
P.O.Box 553

FI-33101 Tampere
Finland

timo.aho@tut.fi

Johannes Koskinen
Tampere University of

Technology
P.O.Box 553

FI-33101 Tampere
Finland

johannes.koskinen@tut.fi

Antti Nieminen
Tampere University of

Technology
P.O.Box 553

FI-33101 Tampere
Finland

antti.h.nieminen@tut.fi

ABSTRACT
For some time it has been a growing trend to move appli-
cations from the desktop to the web and especially to cloud
environment. Very often the web application solutions are
based on the Java language. In this case, the OSGi specifi-
cation is arguably the number one choice for running multi-
ple applications on a single Java virtual machine. Unfortu-
nately, OSGi does not solve all the security vulnerabilities
that emerge in such an environment. For instance, computer
resource usage is only marginally controlled. In this paper,
we discuss the security of the OSGi environment. In par-
ticular, we introduce a solution to running untrusted OSGi
applications. In our case, controlling the permissions of the
applications is fairly simple. A more challenging task is to
manage the computer resource usage. We present a moder-
ately straightforward solution that still grants a reasonable
level of security. Unlike other similar OSGi resource man-
agers and monitors, our solution does not need any modifi-
cations to the web applications or OSGi components. More-
over, we distinguish each web session of an application while
competing methods only monitor complete applications as
single entities.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—protection mech-
anisms

General Terms
Measurement, Performance

Keywords
Java, Cloud Computing, OSGi, Profiling, Web Applications

1. INTRODUCTION
One of the main trends in current development in the com-
puting world is the move toward ubiquity. This has been

made possible by the platform independent development
technology — especially web and cloud techniques. The sig-
nificance and amount of web applications is growing rapidly;
more and more traditional desktop applications are moving
to the web. This trend has multiple notable benefits. Web
applications are available geographically everywhere and in-
dependent of the underlying platform. The web, and espe-
cially the usage of the cloud [1, 2], makes thin application
clients possible by moving functionality to the server side.
Altogether, the web provides new inexpensive ways to pub-
lish and maintain applications.

A remarkable part of web applications is based on the Java
programming language. Especially Java servlets [8] are a
technique which is widely used for web applications. Some
of the key advantages of using the servlets are the huge num-
ber of tools and frameworks available to help you develop
web applications with it. An important factor in these tech-
niques is a web container, which is the component of a web
server that interacts with the servlets. A web container is re-
sponsible for managing the lifecycle of servlets and mapping
a URL to a particular servlet. When the HTTP request from
the browser is received by the web server, it is forwarded to
the web container. The container maps this request to a
particular servlet and calls its method in order to process
the request.

In order to share the same network address and to conserve
the resources of the host server, the servlets share the same
Java virtual machine (JVM) instance. Each HTTP request
is serviced in its own separate thread. In this way, the dif-
ferent requests can be serviced simultaneously. However,
because of the shared JVM, the resources of the JVM are
shared. In practice, this means that the servlets share the
memory available, the CPU-time and access rights of the
JVM. If some of these resources are somehow limited by the
operating system or the runtime environment, the limita-
tions will apply to all of the servlets, and thus all of the web
applications, executed in that JVM. Moreover, one cannot
use operating system level (i.e. JVM level) information to
monitor the resource usage as there is no way to tell which
web application is using the resources. Sharing the resources
also means that if some of the web application exceeds the
limits set to JVM, all the web applications are closed as the
JVM instance is ended.

Even if the web applications were distributed in the differ-
ent Java virtual machines so that each web application is
executed by separated virtual machines in cloud environ-
ment, closing one of the JVMs would still affect all the users
using the application. In other words, all the sessions, i.e.
instances of that web application are closed.

The Java language lacks many important supportive fea-
tures to run multiple web applications on a single Java vir-
tual machine. To patch this up, a widely adopted OSGi1

specification [19] has been published. OSGi introduces a
dynamic component model which allows, e.g., updating, in-
stalling and removing components on-the-fly in a single Java
virtual machine [5, Section 15.1]. The components, also
called OSGi bundles, can communicate with each other in
a dynamic fashion. There are multiple implementations for
the standard: e.g., open source Apache Felix2, Makewave
Knopflerfish3, and Eclipse Equinox4 as well as commercial
ones.

OSGi is compatible with Java servlets. In fact, OSGi pro-
vides a core bundle that implements a web container to run
Java servlets so that web applications can be deployed as
OSGi bundles. Thus, the web applications do not need to
care about the OSGi specific issues.

Despite its many merits, OSGi unfortunately does not solve
all the security problems attached to multiple public un-
trusted web application hosting. Some of the vulnerabilities
are implied by Java principles [3, 6], some by the OSGi fea-
tures [14,15]. For example, the usage of computer resources
like memory, CPU time, network traffic is only marginally
controlled in plain Java [11].

As the direct usage of servlets is relatively rare nowadays, we
use a Java framework called Vaadin [4] to test the ideas pre-
sented in this paper. Vaadin is an open source framework for
developing servlet based Rich Internet Applications (RIA).
Vaadin framework is also readily compatible with OSGi. Be-
cause the framework is configured as an OSGi bundle it is
possible for other bundles to use it directly. In this case,
the applications use the Vaadin framework bundle like a
dynamic library resulting in very lightweight applications.
The typical size of a Vaadin application bundle file is less
than 100 kilobytes, so the application starts up in an in-
stant as the Vaadin framework code is already in memory
and ready for use. As OSGi provides means to load and reg-
ister servlets dynamically [5, Section 15.1], we use a special
OSGi registration bundle for Vaadin applications.

In this paper, we discuss the security of running web ap-
plications on the OSGi platform. As a concrete case, we
use a public cloud-based web hosting service. The users can
deploy their own web applications directly to the hosting
service. After that, the web applications are dynamically
loaded by the OSGi server environment. This kind of service
will clearly require some kind of security and resource man-

1OSGi originally stood for Open Services Gateway initiative
framework. The longer form is at present seldom used be-
cause the specification has moved beyond the original focus.
2Available at http://felix.apache.org.
3http://www.knopflerfish.org
4http://www.eclipse.org/equinox

agement so that malfunction in one web application cannot
jeopardize the functionality of the rest of the web applica-
tions or the hosting system. Moreover, if only one session
of the web application takes too many resources, only that
session should be ended, not the whole application. Anal-
ogously, if one of the Google Docs sessions takes too much
memory, it is not an option to close the whole service from
all of the Google Docs users.

The open hosting service should take account at least the
following issues:

1. How can we restrict file access of the web applica-
tions so that the applications cannot read or write files
owned by others? In addition, the system configura-
tion files should not be available for the hosted web
applications.

2. How can we set separate limits for resource usage to
each web application or even to each web application
instance (session)? These limits should be also update-
able.

3. How can we find out the web application session that
has exceeded its limits and close it?

4. How can we monitor the resource usages of each web
application?

To address these issues, we introduce solutions and an ex-
ample implementation of such security decisions. The paper
is organized as follows. The security issues and our solu-
tions for them are split in two categories. In Section 2, we
go through the permission control of untrusted and trusted
OSGi bundles. In Section 3, we introduce the more com-
plicated matter: computer resource monitoring and control-
ling. Finally, we present some concluding remarks and dis-
cussion in Section 4.

2. OSGI SECURITY AND PERMISSIONS
In publicly available services, we have to prepare for the
malicious and defective behavior of client web applications.
This can either be a result of user actions with a malfunc-
tioning or vulnerable web application or even a hostile ap-
plication loaded on our hosting server.

By default, OSGi controls the client applications only slightly.
All the running code has, e.g., a permission to call the Sys-

tem.exit method, which terminates the execution of the
whole Java virtual machine. An exhaustive list of the vul-
nerabilities of the OSGi environment has been presented
in [14, 15]. Fortunately, the OSGi Release 45 Specifica-
tion [19] gives at least a partial solution by defining an op-
tional OSGi Security layer. In our implementation, we use
the publicly available Apache Felix implementation which
includes the layer [5].

The OSGi Security model is based on the Java 2 Specifica-
tion [10]. The basic idea is that code has to be authenticated

5As of 2012, also OSGi Release 5 has been published. Nev-
ertheless, OSGi Certification only covers releases until ver-
sion 4.2. Moreover, implementations also seem to support
at most Release 4.

before it is given permission to execute method calls outside
its own domain. The model supports directly authenticating
by file location and by the signer of the JAR files. Moreover,
custom authentication types can be created by uniting con-
ditions. We refer to literature [5, Section 14.7] for more de-
tails. In addition to the original Java permissions, the OSGi
security layer introduces some OSGi specific ones. However,
they follow the same principles.

The Java permission model is based on a class called Per-

mission. All the specific permissions are derived from it.
The class has a method called implies which takes another
permission as an argument. It indicates whether the argu-
ment permission is implied by the first permission. This
way the class takes care of both defining and checking per-
missions. The OSGi framework further simplifies the Java
permission model by treating every bundle as a single sepa-
rate permission entity.

Now, when a potentially problematic method is called, the
virtual machine checks that the whole call stack has per-
mission to execute it. If this is not the case, the opera-
tion is denied. There is also a technique called privileged
calls to truncate the call stack passing. For further details,
see [5, 10, 19]. The same guidelines are followed regardless
of the type of service applied for. The called method may
be offered internally by Java, by external libraries, by the
OSGi framework or by other OSGi bundles.

All the bundles are granted all permissions by default. All
the entities can also define global permissions and so first
one to do so makes the decision. Thus, by using OSGi
StartLevel package [19, Section 8.6] we have to take care
that our security bundle is started before external applica-
tions. In Felix, this can be done with an implementation
specific configuration file. In our application, all the un-
trusted external web application bundles are installed in a
directory separate from our framework. Hence, for bundles
in the directory, we can deny all the permissions not neces-
sary for basic starting and running. When using an openly
available web service to publish web applications, we cannot
trust the client applications at all.

Nevertheless, what are the necessary permissions? In our
case, the Vaadin applications primarily need permission to
import and register Vaadin services. The OSGi framework
takes care of other basic privileges like starting up and mak-
ing operations on a private bundle cache on disk. In this kind
of public environment, the external bundles should have very
limited permissions. For instance, they should not interact
with each other, start new bundles or use disk space in paths
outside their private area. A normal permission file could
be like in Listing 1.

If the web application code is offered by an unknown au-
thor, the OSGi bundle package should be wrapped up and
validated by our own framework. In practice, this means
that static analysis methods are applied to bundles to be
hosted. Furthermore, if the compilation of the web appli-
cation to bytecode is also carried out by our service, it is
possible to restrict the libraries and method calls available
for the web application. In this way, hostile actions by, e.g.,
bundle manifestation files are at least very challenging to

ALLOW {
[org.osgi.service.condpermadmin.BundleLocationCondition
"${FELIX_FRAMEWORK}/bundle/*"]
(java.security.AllPermission "" "")
} "All permissions to internal application JARs"

ALLOW {
[org.osgi.service.condpermadmin.BundleLocationCondition
"${FELIX_FRAMEWORK}/load/*"]
(org.osgi.framework.PackagePermission "com.vaadin" "import")
(org.osgi.framework.PackagePermission "com.vaadin.*" "import")
(org.osgi.framework.ServicePermission "com.vaadin.Application"

"register")
} "Allow the basic permissions to external applications"

DENY {
[org.osgi.service.condpermadmin.BundleLocationCondition
"${FELIX_FRAMEWORK}/load/*"]
(java.security.AllPermission "*" "*")
} "Deny all other permissions for external applications"

Listing 1: An example permission file

execute. Also the bundle size can be controlled beforehand.
These techniques prevent a significant amount of the vul-
nerabilities listed in [15].

Nevertheless, the above-mentioned solution is still inade-
quate in some respects. First of all, the presented security
solution does not control all the resource usage of bundles.
Thus, a bundle can still use uncontrollable amount of mem-
ory, CPU time, disk space in private area and execute unre-
stricted amount of method calls. This problem is partially
addressed in our resource manager introduced in the next
section.

Some more minor vulnerabilities exist. For example, we rely
on Apache Felix implementation specific behavior on the
starting order of the bundles. This behavior is not explicitly
defined by the OSGi specification. If the starting order is
changed, an external bundle could be used to manage the
rights.

In addition, we come across some vulnerabilities introduced
by Java platform, especially the ones mentioned in the jus-
tification of Java specification request (JSR) 121 for appli-
cation isolation [6]: At least some parts of the Java virtual
machine state can be, often unintentionally, shared between
applications. With the use of the shared state it is possible to
affect other applications and even the virtual machine itself
in unwanted ways. There are several attempts [3, 17], most
notably Multi-tasking virtual machine [18], to implement
JSR-121. Unfortunately, there is no up-to-date implementa-
tion on Java 2 Standard or Enterprise editions. Fortunately,
both the use of OSGi and strict permissions substantially
limit the conceivable vulnerability in our case.

3. MONITORING RESOURCE CONSUMP-
TION

Even though we can limit what the applications are allowed
to do with Java permission management, there are still ar-
eas that cannot be covered by the permissions. One of the
most important areas is the resource consumption of the
web applications. It is important that one application or
application instance cannot “steal” all the memory or CPU
time of the Java virtual machine. This is even more criti-

Browser

Java Virtual Machine Process

Java VM

OSGi core libraries

App1

R
esou

r ceM
an

a ger

Web
application 1

JNI

Servlet registration proxy

Web server
(Jetty)

Web Container

Instrumentation code

Instrumentation code

Browser

ResourceManagerUI

Instrumentation code

JVMTI

Figure 1: Overview of Resource Manager.

cal in cloud computing environments where customers are
charged on the used computation time.

For monitoring resource consumption, Resource Consump-
tion Management API (JSR-284) [7] has been proposed. Un-
fortunately, we are not aware of any working implementation
of the specification available for the OSGi environment. For
this reason, we have implemented our own resource mon-
itoring component called Resource Manager. Figure 1 il-
lustrates the components of Resource Manager and their
relationships.

Resource Manager is focused on monitoring resource con-
sumption of the web applications. Unlike other similar OSGi
resource managers and monitors (such as [3,9,11,16]) it does
not need any modifications to the Java virtual machine, ex-
isting web applications, or OSGi components. Moreover,
our purpose is to monitor and collect information on the
web application sessions, not the bundles themselves.

Resource Manager will not try to restrict the usage of ex-
ternal resources like files as they are already handled by the
permissions. Instead, the focus is on the internal resources
of the virtual machine. Such resources are the number of
threads, used CPU time (per thread and per application),
and allocated memory. These resources are selected as the
monitoring of them can be done without any knowledge of
the application and will not cause too much overhead. In ad-
dition, these resources are shared by all the web applications
inside the Java virtual machine. There are still other re-
sources, namely disk space and network, whose usage should
be monitored by using some other means.

3.1 Implementation of Monitoring
In practice, Resource Manager is a simple profiling tool,
which is augmented with per application limits. When one
of the application limits is reached, Resource Manager tries
to interrupt or stop the misbehaving application. Moreover,
the usage information can be presented to the administrator
and logged to be used later for analysis purposes. For exam-
ple, it might be reasonable that the applications requiring
very much CPU time are run on separate servers.

Resource Manager is based on the Java Virtual Machine
Tool Interface (JVMTI) [13]. JVMTI provides a way to
inspect the state of applications running in the Java vir-
tual machine. Resource Manager is hooked to a Java vir-
tual machine so that when the virtual machine starts a new
thread, Resource Manager is called by the JVMTI. Simi-
larly, Resource Manager is called when threads are stopped.
Memory allocations can be easily covered by instrumenting
the code to call Resource Manager via Java Native Inter-
face (JNI) [12] whenever a new object is allocated. The
instrumentation is carried out when the class file loaded, so
no preliminary changes to the code are required. To track
the release of the memory, one can use JVMTI callbacks.
Another alternative is to iterate through heap memory and
calculate memory blocks that are in actual use. We have
used the former, faster method, even though it may tem-
porarily give inaccurate memory consumption figures as the
memory blocks are released only by the garbage collector.

Monitoring CPU time is a little more tricky, as the usage
must be polled on regular intervals. This is normally done
by having a separate thread which periodically collects the

Figure 2: Monitoring Web Application for Resource Manager.

used CPU time on all the threads that are active on that
time. This approach works very well on background threads,
as they are active quite long time. For short-lived threads,
it might be possible that the thread is started just after
the collection process and is ended before the next round
is started. In this case, the collector thread does not even
notice such a thread. For our purposes, this is not such a big
problem as we are interested in excessive CPU consumption,
and thus we do not have to worry about Resource Manager
occasionally missing a short-lived thread.

The client applications are not aware of the resource mon-
itoring. Neither does Resource Manager have any detailed
information on the applications. Hence the basic JVMTI
calls are not enough to find out which application has allo-
cated a certain object. Resource Manager has only following
information about the memory allocations: currently using
thread, a partial call stack, and the amount of the alloca-
tion. The situation is even worse with new threads as they
do not contain any information on the parent threads which
originally applied for them. For this reason, we use the only
easily available method to distinguish applications, namely
Java thread groups. Thread groups are, as the name de-
scribes, a mechanism to collect a set of threads. By default,
we assign a thread to the group which includes its parent. At
least one group always exists because the Java runtime sys-
tem creates a thread group named main. By having a unique
thread group for each application, the amount of allocated
resources can be calculated by using the thread group as
criterion. The idea can be extended so that each opened
application session has its own thread group.

Every time a service from a web application servlet is re-
quired, a web container calls the service method of the servlet.
Each request is serviced in its own separate thread or, in
other words, each call is made by separate thread. Unfor-
tunately, it is not possible to change the thread group of
a running thread. However, we can handle this method in
a proxy which starts a new thread in web application in-
stance/session specific thread group and starts running the
original service in the new thread. It is relatively easy to
have separate thread groups for each web application, even
without any modifications to existing code if a registration

proxy bundle is used. Moreover, now all resource allocations
are made in the context of the new thread group and thus in
the context of the session or application instance. A pseudo
code for the proxy is presented below:

service(request,response):
-- find the correct session based on the request
Let applicationSession=getApplicationSession(request)
Let threadGroup=getOrCreateThreadGroup(applicationSession)
if threadGroup is destroyed, end session and return
Let t=new thread in threadGroup
-- call the original service method
t.start(application.service(request, response))
t.join() -- wait for thread to end
if t was interrupted:
throw a new exception("Resource limits exceed")

if session has ended:
destroy threadGroup

With Vaadin applications, we can use a dynamic servlet
registration bundle with a service call proxy to add mon-
itoring aspect to all Vaadin based web applications. With
other frameworks or web applications made without any sup-
porting framework, the proxy code should be included to a
proper place to be called before javax.servlet.service. It
should be noted that this proxy code will work regardless of
Resource Manager component being loaded or not. How-
ever, it would be more or less useless without the profiling
component.

3.2 User Interface for the Administrator
To provide feedback for the administrator, an interface is
required for an administrator component to get the resource
consumption information. An example, ResourceManagerUI,
in shown in Figure 2). As Resource Manager is a native li-
brary residing outside of the virtual machine, JNI interface
must be used. We can fetch the information about a single
thread group (e.g., for the specific web application) or about
all the collected applications. If the thread groups are named
according to the application names and the session ids, the
administrator gets the information in human readable form
even though Resource Manager knows nothing about the ac-
tual applications. Remember that Resource Manager only

notices single threads and thread groups but does not know
about their conceptual link with the applications.

A natural user interface for information provided by Re-
source Manager is a regular web application itself. It gets
the information using the JNI interface and shows the results
on the screen. If the user wants to kill a selected applica-
tion session, it is carried out by destroying the corresponding
thread group. The proxy code presented before notices the
destroyed group and ends the session. Destroyed groups are
removed from the database of Resource Manager compo-
nent by garbage collector thread, which compares existing
thread groups with the collected information and removes
all information for the non-existing groups.

3.3 Monitoring Overhead
Monitoring and profiling will always cause some overhead.
In our case, the overhead consists of three different com-
ponents: starting a new thread in the registration proxy,
monitoring threads with JVMTI callbacks, and monitoring
memory usage via instrumented code. Starting a new thread
has previously been quite a complex operation and finding
or creating a correct thread group for the thread will add
the overhead even further. However, creating a new thread
with current versions of Java virtual machines causes negli-
gible overhead. In addition, the thread is started only after
an HTTP request, so their frequency is reasonable and the
overhead will remain at acceptable levels. Based on our
tests, the overhead of starting a new thread is less than 0.4
ms per request in a relative slow machine with Java 1.6.

Nevertheless, two remaining overhead sources are more prob-
lematic. JNI and JVMTI calls can be time consuming as
they cross the virtual machine boundary even though they
still stay inside the virtual machine process. However again,
starting a new thread is a moderately light operation, and
even with native calls the thread monitoring overhead (less
than 1 ms including the creation of the new thread) is al-
most always overshadowed by the actual thread execution
time (typically hundreds of milliseconds).

Unfortunately, monitoring memory usage may cause prob-
lems. If the application allocates thousands of objects for
each HTTP request, the allocations may impose significant
overhead on program execution. In the worst case, where
the test application did nothing but allocated resources, the
execution time of the application was multiplied. For such
applications, it might be reasonable to leave instrumentation
phase out, thus disabling memory usage monitoring. Alter-
natively, one can regard such an application as the hostile
one and decline to start the application.

4. CONCLUSIONS
In this paper, we discussed the security features of OSGi
based web applications on a publicly available web applica-
tion hosting service. To test our ideas, we used applications
based on Vaadin framework [4]. The idea can easily be gen-
eralized to all web applications in OSGi environment. In
fact, in other environments only the functionality of servlet
registration proxy needs to be implemented in some other
way as discussed in Section 3.1.

In the introduction, we discussed the security issues to be

solved. The first issue covers the restriction of file access of
the untrusted web applications. In our application, we are
able to solve permission based vulnerabilities of this kind
moderately simply with the OSGI permissions.

We encounter a more challenging task when trying to solve
the rest of the issues. In order to address the resource related
security issues, we monitor the applications for an excessive
usage of computer resources like memory and CPU time. If
an application exceeds its limits, the session of the applica-
tion is automatically closed to protect the other applications
that are executed on the same Java virtual machine.

We ended up with a tool set, which contains three differ-
ent components: a servlet registration bundle with a service
call proxy to separate HTTP requests for different web ap-
plications and their sessions, Resource Manager for actual
profiling and monitoring tasks, and a user interface to show
the current profiling information.

We have noticed that this kind of monitoring and profil-
ing will cause some overhead. Part of the overhead comes
from the service proxy, the rest from the code instrumenta-
tion. Based on the tests, the separation based on the thread
groups has negligible overhead. The monitoring code for
memory allocation causes more overhead as the web appli-
cation usually allocates several short-lived resource objects
during the service handling. However, the overhead will not
be a major problem with regular web applications. In ad-
dition, Resource Manager provides an option to skip the
memory monitoring.

In summary, in this paper we presented a simple security
solution for hosting OSGi based web applications. It grants
at least moderate level security for the system. However,
it is worth noting that the security level implied by our ap-
proach is not quite as high as the one introduced by isolation
based systems, e.g., [3]. However, unlike other similar OSGi
resource managers and monitors like [11] our solution does
not need any modifications to the web applications or OSGi
components. Moreover, our solution also treats every web
session of each application as a monitoring target which is
often more useful for a security point of view than solely the
summary of the application usage.

5. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Communications of the ACM, 53(4):50–58,
2010.

[2] Y. Chen, V. Paxson, and R. H. Katz. What´s new
about cloud computing security? Technical Report
UCB/EECS-2010-5, University of California, Berkeley,
CA, 2010.

[3] N. Geoffray, G. Thomas, G. Muller, P. Parrend,
S. Frénot, and B. Folliot. I-JVM: a Java virtual
machine for component isolation in OSGi. In
International Conference on Dependable Systems and
Networks (DSN 2009), Los Alamitos, CA, 2009. IEEE
Computer Society.

[4] M. Grönroos. Book of Vaadin. Vaadin Ltd., Turku,
Finland, 7th edition, 2013.

[5] R. Hall, K. Pauls, S. McCulloch, and D. Savage. OSGi
in action: Creating modular applications in Java.
Manning Publications, Greenwich, CT, 2010.

[6] Java Community Process. Java specification request
121: Application isolation API specification, 2006.
Version 2.7, final.

[7] Java Community Process. Java specification request
284: Resource consumption management API, 2009.
Version 2.6, final.

[8] Java Community Process. Java specification request
315: Java servlet 3.0 specification, 2009. Version 3.0,
final.

[9] H. Lin, C. You, M. Zhou, and H. Mei. Proxy centric
approach for component resource monitoring on OSGi
platform. Journal of Frontiers of Computer Science
and Technology, 5(1):23–31, 2011. In Chinese with
English abstract.

[10] S. Microsystems. Java 2 security architecture, 2002.
Version 1.2.

[11] T. Miettinen. Resource monitoring and visualization
of OSGi-based software components. Technical Report
685, VTT, Espoo, Finland, 2008.

[12] Oracle. Java native interface specification, 2006.
Version 6.0.

[13] Oracle. JVM tool interface, 2006. Version 1.2.1.

[14] P. Parrend. Software Security Models for
Service-Oriented Programming (SOP) Platforms. PhD
thesis, Institut National des Sciences Appliquées de
Lyon, Lyon, France, 2008.

[15] P. Parrend and S. Frénot. Java components
vulnerabilities: An experimental classification targeted
at the OSGi platform. Technical Report 6231, Institut
National de Recherche en Informatique et en
Automatique, Le Chesnay Cedex, France, 2007.

[16] R. Schwammberger. Performance isolation for
component systems. Master’s thesis, Swiss Federal
Institute of Technology Zurich, Zurich, Germany, 2009.

[17] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and
D. White. Java on the bare metal of wireless sensor
devices: The Squawk Java virtual machine. In
Proceedings of the 2nd International Conference on
Virtual Execution Environments (VEE 06), pages
78–88, New York, NY, 2006. ACM.

[18] S. Soman, L. Daynès, and C. Krintz. Task-aware
garbage collection in a multi-tasking virtual machine.
In Proceedings of the 5th International Symposium on
Memory Management (ISMM 06), pages 64–73, New
York, NY, 2006. ACM.

[19] The OSGi Alliance. OSGi service platform: Core
specification, 2009. Release 4, version 4.2.

