
A Walk from 2-Norm SVM to 1-Norm SVM
Jussi Kujala and Timo Aho and Tapio Elomaa

Department of Software Systems
Tampere University of Technology

P. O. Box 553, FI-33101 Tampere, Finland
Email: firstname.lastname@tut.fi

Abstract—The 1-norm SVM performs better than the standard
2-norm regularized SVM on problems domains with many
irrelevant features. This paper studies how useful the standard
SVM is in approximating the 1-norm SVM problem. To this
end, we examine a general method that is based on iteratively
re-weighting the features and solving a 2-norm optimization
problem. The convergence rate of this method is unknown.
Previous work indicates that it might require an excessive number
of iterations. We study how well we can do with just a small
number of iterations. In theory the convergence rate is fast,
except for coordinates of the current solution that are close
to zero. Our empirical experiments confirm this. In both real-
world and synthetic problems with irrelevant features, already
one iteration is often enough to produce accuracy as good as
or better than that of the 1-norm SVM. Hence, it seems that
in these problems we do not need to converge to the 1-norm
SVM solution near zero values. The benefit of this approach is
that we can build something resembling the 1-norm regularized
solver based on any 2-norm regularized solver. This is quick
to implement and the solution inherits the good qualities of the
solver such as scalability and stability. For linear SVMs the recent
advances in efficient solvers make this approach practical.

I. INTRODUCTION

Minimizing empirical error over some model class is a basic
machine learning approach which is usually complemented
with regularization to counterattack overfitting. The support
vector machine (SVM) is an approach for building a linear
separator, which performs well in tasks such as letter recog-
nition and text categorization. In this paper the linear SVM is
defined to solve the following minimization problem:

min
w

1

2
‖w‖2︸ ︷︷ ︸

regularizer

+C

m∑
i=1

loss(yi, fw(xi))︸ ︷︷ ︸
error

. (1)

Here {xi, yi}mi=1 ∈ Rd×{−1, 1} is a training set of examples
xi with binary labels yi. The classifier fw(x) that we wish to
learn is w·x (plus unregularized bias, if necessary), where w ∈
Rd is the normal of the separating hyperplane. The function
loss(y, f(x)) is the hinge loss max(0, 1− y f(x)) (L1-SVM),
or its square (L2-SVM).

The squared 2-norm ‖w‖2 is not always the best choice as
the regularizer. In principle the 1-norm ‖w‖1 =

∑d
i=1 |wi| can

handle a larger number of irrelevant features before overfit-
ting [18]. In the context of least-squares regression Tibshirani
[22] gives evidence that L1-regularization (lasso regression) is
particularly well-suited when the problem domain has small
to medium number of relevant features. However, for a very

small number of relevant features a subset selection method
outperformed L1-regularization in these experiments and for a
large number of relevant features the L2-regularization (ridge
regression) was the best.

In a 1-norm SVM [23] the regularizer is the 1-norm ‖w‖1.
The resulting classifier is a linear classifier without an embed-
ding to an implicit high-dimensional space given by a non-
linear kernel. Some problem domains do not require a non-
linear kernel function. For example, this could be the case if
the input dimension is already large [14]. Furthermore, we can
try to map the features to an explicit high-dimensional space
if the linear classifier on original features is not expressive
enough. For instance, we could map training examples to
values of a kernel function evaluated at random points in the
training set.

In this paper we study a simple iterative scheme which
approaches the 1-norm SVM by solving a series of standard
2-norm SVM problems. Each 2-norm SVM solves a problem
where the features are weighted depending on the solution
of the previous 2-norm SVM problem. Hence, we will refer
to this algorithm as the re-weighting algorithm (RW). More
generally, we can apply it to minimize any convex error
function regularized with 1-norm.

In this scheme most of the complexity resides in the regular
SVM solver. Hence, the desired features of any standard
SVM solver are readily available. Such features include per-
formance, scalability, stability, and minimization of different
objective functions (like L1-SVM and L2-SVM). Several fast
approximate solvers for linear SVMs have been proposed
recently [21], [13]. They are sufficiently quick to justify
solving several linear SVM problems for a single 1-norm SVM
problem. For example, Pegasos [21] trains the Reuters data
set with ca. 800,000 examples and 47,000 sparse features in
five seconds (does not count the time to read the data to
memory).

Our contribution is three-fold. First, we provide theoretical
results on the speed of the convergence. It is known that
similar optimization methods are equivalent to the 1-norm
solution [9]. Unfortunately, the convergence rate is unknown.
Neither we are able to prove hard bounds on it. We can,
though, provide intuition on the behavior of the convergence.
More precisely, we will lower bound the decrease of the 1-
norm objective in one iteration. This lower bound is higher
when the current solution is poor in terms of the 1-norm
objective function. On the other hand, the bound also depends

on our current solution: it shows that the convergence is slow
on coordinates that are already near zero.

The second contribution is that we experimentally demon-
strate the efficiency of the resulting algorithm in the specific
application of the SVMs. Because theoretical results do not
guarantee the speed of convergence, we experiment on how
many iterations one needs to run the algorithm. Previous
work [20] has suggested that a similar algorithm needs up
to 200 iterations to converge in the case of the multinomial
logistic regression. However, the experiments are complicated
by the fact that minimizing the objective is merely a proxy
of the real target — generalization accuracy. When measuring
accuracy, the 1-norm SVM solution does not necessarily give
the best performance on problems with irrelevant features.
Each iteration of the RW algorithm solves an optimization
problem. Thus, the accuracy of the solution given by any
iteration may be good even if it has not reached the 1-norm
SVM optimum. In fact, previous work [8] argues that the best
performance is often somewhere between the 1-norm and 2-
norm optima.

We will experiment on real-world data sets. These include
both ones with many irrelevant features and ones without.
These experiments will demonstrate that in these data sets the
convergence to the 1-norm SVM is not necessary. Surprisingly,
the RW algorithm actually performs better than 1-norm SVM
on problems with few relevant features. Furthermore, our
experiments on synthetic data attempt to quantify this effect.
They suggest that the performance of the RW algorithm is
better than 1-norm SVM or standard SVM in problem domains
with varying number of relevant features.

Finally, we provide a patch to liblinear [13] that
implements the RW algorithm.

The structure of this paper is as follows. In Section II we
first cover the theoretical background of this work. Section III
presents the algorithm and provides both intuition and theory
on why it works. Section IV concerns empirical behavior of the
algorithm, including results on the speed of convergence and
how the number of relevant features affects the performance.
In Section V we discuss how the results in this paper relate
to previous work. Finally, Section VI concludes this work.

II. THEORETICAL BACKGROUND

In this section we introduce the theoretical background on
how 2-norm regularization has been used to solve 1-norm
regularized problems. Consider a simple linear regression
problem, where we wish to minimize over w the following
expression for continuous outputs yi:

‖w‖1 + C

m∑
i=1

(yi − w · xi)2︸ ︷︷ ︸
Esquared(w)

. (2)

This is the 1-norm regularized least squares proposed by
Tibshirani [22]. To the best of our knowledge Grandvalet and
Canu [9], [10] were the first to suggest a connection between
1-norm regularization and 2-norm regularization. They showed

that 1-norm regularized least squares regression equals 2-norm
regularization of a certain error function. This minimization
was over additional relevance parameters that weighted the
features in the error function. These parameters were con-
strained by a condition that limited their 2-norm. However,
their work does not give the same updates as the ones in this
paper.

Independently from the Grandvalet and Canu’s approach
an expectation maximization (EM) algorithm has been used
to justify similar re-weighting algorithms as the one studied
in this paper. Minimizing (2) is equivalent to computing the
maximum a posteriori (MAP) estimate of the weight vector
w given a Laplacian prior on it and Gaussian noise on the
outputs of the assumed underlying model w · x (and appro-
priate variances). Figueiredo [6] derived an EM algorithm for
computing the MAP estimate of the weight vector w for the
Laplacian prior, and arrived at the following iterative updates
(the derivation uses hidden hyper-parameters on the variances
of the items in w):

w(t+1) = argmin
w

1

2

d∑
i=1

w2
i

|w(t)
i |

+ Esquared(w), (3)

where w(t) is the value of the weight vector in the t-th
iteration and d is the dimension of the example space. The
above expression reduces a 1-norm regularized least-squares
problem to 2-norm regularized least-squares problem, where

the feature i is weighted with
√
|w(t)

i |. Similar justification
through the EM algorithm could be derived for other error
functions. For example, logistic regression regularized with 1-
norm corresponds to the MAP estimate of w with Laplacian
prior and logistic loss function. The work of Argyriou et al. [1]
also implies an algorithm with the same updates as in (3).
These updates are the ones that we use, though our error
function is different.

III. THE RE-WEIGHTING ALGORITHM

Algorithm 1 re-weights the features in each iteration, which
makes it possible to use the SVM solver as a black-box. In
short, during t-th iteration the RW algorithm multiplies the
feature i with a weight v(t)i . Then it obtains a 2-norm SVM
solution w from these weighted features. The new weights

v
(t+1)
i are set to

√
|wiv

(t)
i |.

We could improve the performance of the algorithm by
tailoring the SVM solver. Here we are interested in simplicity
rather than performance optimizations that have unclear value.
Note that the algorithm is in fact oblivious to the choice of the
error function, so the SVM solver could be either L1-SVM or
L2-SVM (or any other convex error for that matter).

A. Intuition

Figure 1 gives a graphical justification for the benefits of
L1-regularization over L2-regularization. In it the contour of
the red tilted square finds a sparser solution, because it is
more spiky in directions where the weights are zero. The blue
dashed ellipse shows what effect weighting of the features

Algorithm 1 1-norm SVM via 2-norm SVM
Input: a training set {(xi, yi)}mi=1 and number of iterations
N .
Output: a weight vector w.
Initialize vector v(1) to all ones.
for t = 1 to N do

for each example xi do
for each coordinate j do

Set x
′i
j := xijv

(t)
j .

end for
end for
w(t) :=
solution to SVM with examples {(x′i, yi)}mi=1.
for each coordinate i do

Set v(t+1)
i :=

√
|w(t)

i v
(t)
i |.

end for
end for
for each coordinate i do

Set wi := w
(N)
i v

(N)
i .

end for
Return w

Fig. 1. 2-norm contour as the black circle, 1-norm as the red tilted square,
and scaled 2-norm with the blue dashed ellipse.

has. If weighted correctly, the optimization with the squeezed
ellipse will approximate L1-regularized solution better than
the L2-regularized one.

What is not apparent in Figure 1 is that if we know a
non-optimal feasible point, then we can always choose the
relative lengths of the axes of the ellipsis so that the L1-
regularized objective value will decrease. This will be shown
in the following theory section.

Remark: Figure 1 also suggests that the RW algorithm has
difficulties to converge a coordinate to zero, because of the dull
corners of the squeezed ellipse. The following theory section
will also quantify this effect.

B. Theory

For vectors w and v we use w ⊗ v to denote an element-
wise product (Hadamard product), where the ith coordinate
(w ⊗ v)i is wivi. The absolute value |w| of a vector w is a
vector containing the absolute values of the original vector:

|w|i = |wi|. The error function E(w) denotes the error given
by a weight vector w. The modified error function Ev(w)
denotes the error, where features are weighted with |v|, i.e.,
Ev(w) = E(w ⊗ |v|). When the specific norm of ‖w‖ is not
indicated, it is always the 2-norm.

1) Hard-margin: For clarity let us first cover the hard-
margin SVM, in which each example (xi, yi) implies a con-
straint: yi(w · xi) ≥ 1. The hard-margin SVM minimizes
‖w‖2 /2 over these constraints. The following theorem gives a
partial motivation for the minimization over weighted features.
However, it does not guarantee that we find a better solution in
each iteration. The theorem assumes that our current solution
is a vector v ⊗ |v|. We then minimize over the weighted
problem where the weight on the ith feature is |vi|. Now, one
possible solution to the weighted problem is to set the solution
w to v. Then the new solution to the original problem equals
the previous solution v⊗|v|. However, Theorem 1 tells that if
the minimization finds a solution w to the weighted problem
such that ‖w‖2 < ‖v‖2, then we obtain a solution w ⊗ |v|
with a lower 1-norm. The subsequent Theorem 3 will add the
necessary steps to guarantee that under certain conditions we
will find such solution w.

Theorem 1. Let u be any vector and define v as the weight
vector induced by u, i.e., u = v ⊗ |v|. Assume that w
satisfies all constraints yi(w · (xi ⊗ |v|)) ≥ 1. The weighted
problem implies a new solution unew = w ⊗ |v| for the
original unweighted problem. Now, if ‖w‖2 < ‖v‖2, then
‖unew‖1 < ‖u‖1.

Proof: The vector unew satisfies the hard-margin con-
straints because w satisfies the constraints weighted with v.
The following equations show that the 1-norm of unew is
strictly smaller than ‖u‖1:

‖unew‖1 =
∥∥∥√unew

∥∥∥2
2

= |w| · |v| ≤ ‖|w|‖2 ‖|v|‖2︸ ︷︷ ︸
Cauchy-Schwartz inequality

= ‖w‖2 ‖v‖2 < ‖v‖
2
2︸ ︷︷ ︸

we assume ‖w‖2<‖v‖2

= ‖u‖1 .

2) Soft-margin and Generalization to Any Error Function:
Let us now generalize Theorem 1 to the minimization of L1-
regularizer plus any error function, including the hinge loss of
the SVM.

Theorem 2. If u = v ⊗ |v| and unew = w ⊗ |v| and
1

2
‖w‖2 + Ev(w) <

1

2
‖v‖2 + Ev(v), (4)

then unew is a better solution to the L1-regularized optimization
than u:

‖unew‖1 + E(unew) < ‖u‖1 + E(u).

Furthermore, the 1-norm objective decreases by at least as
much as the weighted objective in (4).

The proof of Theorem 2 is given in Appendix A.

3) Convex Error Gives Convergence: Theorem 2 does not
state that we will find a vector w with smaller weighted
objective value than v even if there is a solution u? with a
smaller value to the L1-regularized error. Theorem 3, though,
will show that an iteration finds a solution with smaller
weighted objective value. The theorem assumes that the error
function is convex and that the current solution has no zero
in the coordinates, where u? has a non-zero value. Therefore,
Theorems 2 and 3 together say that an iteration of the RW
algorithm decreases the value of the L1-regularized objective
function.

We will use a scaled 2-norm ‖w‖u =
∑d

i=1 w
2
i /|ui|. A

substitution w := w′ ⊗ |v| shows that regularization with
‖w‖u /2 equals the weighted objective ‖w′‖2 /2 + Ev(w

′),
if u = v ⊗ |v|. Intuitively ‖w‖u approximates ‖w‖1 in a
neighborhood of u, which yields the following theorem.

Theorem 3. Let h be a vector which is normalized so that
‖h‖u = 1. Let vector c? h, where c? is a scalar, denote any
direction in which the L1-regularized objective value decreases
when starting from u. Hence,

‖u+ c? h‖1 + E(u+ c? h) < ‖u‖1 + E(u).

Then the weighted objective function decreases to that same
direction, i.e., there is a scalar c > 0 such that

1

2
‖u+ c h‖u + E(u+ c h) +

1

2
c2 ≤ 1

2
‖u‖u + E(u).

More precisely, the step size c is at least the minimum of c?

and

−

(
d∑

i=1

sign (ui)hi

)
+

1

c?
(E (u)− E (u+ c? h)) .

The proof of Theorem 3 is also given in Appendix A.
Theorem 3 gives us some insight to the speed of conver-

gence. It and Theorem 2 together show that the 1-norm objec-
tive function decreases by at least c2/2 in one iteration. Let us
now derive a more intuitive approximation to the expression of
the step size c. If we assume that for all i the signs of hi and
ui differ, then −c?

(∑d
i=1 sign (ui)hi

)
= ‖u‖−‖u+ c? h‖1.

This approximation is good, if the 1-norm of the solution is
an important factor in the optimization. Hence,

c ' min

(
Obj (u)− Obj (u?)

c?
, c?
)
,

where Obj(x) is the 1-norm objective function. Thus, L1-
regularized error drops quickly if our current solution u is
poor in comparison to optimal u?. On the other hand, c has
an inverse dependence on c?. This implies that convergence
is slow along a coordinate, in which our current solution is
already close to zero. Therefore, it might be impossible to
obtain hard limits to the convergence rate, because the RW
algorithm has trouble in converging near-zero coordinates. The
next section experimentally tests how well we can manage
with a small number of iterations.

IV. EMPIRICAL BEHAVIOR OF RE-WEIGHTING

A. Speed of Convergence

Let us present empirical evidence on how fast the RW
algorithm converges to the 1-norm SVM solution. The
experiments were performed with 16 data sets selected
from UCI machine learning repository and Broad Institute
Cancer Program. The data sets from UCI are abalone,
glass, segmentation, australian, ionosphere,
sonar, bupa liver, iris, vehicle, wine, ecoli,
wisconsin, german, and page. The two data sets from
Broad Institute are leukemia and DLBCL.1

For each data set we let the regularization parameter C
obtain powers of ten from 10−3 to 103. In each iteration we
recorded the objective value of the 1-norm regularized L1-
SVM. For measuring the convergence we used svmlight
[15] with default arguments for most runs (see below for a
discussion on high values of C). We also measured the optimal
value of the objective. For this we used a linear program and
the linprog optimizer from Matlab (with default settings
this is the lipsol solver).

Figure 2 gives a summary of the findings. The
plotted objective value is (attained objective value −
optimal value)/(optimal value). For each data set, we
selected the worst convergence over C at the 20th iteration.
From these 16 curves we formed two curves, the worst-case
and the mean. Additionally, we show the mean and median
over all problem domains and values of C (true mean and
true median).

The plots show that in absolute terms the convergence is fast
on an average problem. We can see this from the behavior
of the true median. However, the worst-case curve never
decreases below 0.1. The worst convergence was obtained for
the gene expression data sets, which have thousands of features
out of which many are zero at the optimum. Thus, the small
non-zero errors over many features lead to slow convergence
in the objective.

We had a problem with svmlight for high values of
the trade-off parameter C. The objective we measure is the
primal objective. However, svmlight actually optimizes
the dual objective to a given error [15]. If zero hinge loss
is attainable, then the primal objective is unstable for high
values of the parameter C. This is because the difference
between hinge loss of 0 and 0.01 is large after multiplied
with C = 1, 000. However, this does not appear in the error
of the dual. Therefore, we used more strict error parameters
in two of the problem domains (leukemia and DLBCL) for
value 100 of the parameter C.

B. Accuracy of Classifiers

Let us turn our attention to our true objective: building ac-
curate classifiers. In this section we chart out how quickly the
accuracy changes during iterations. The experiments include
both problem domains with many relevant features and those
that have many irrelevant features. This selection criterion

1Available from http://www.ailab.si/orange/.

0 5 10 15 20
0

0.5

1

1.5

lin
ea

r−
sc

al
e

er
ro

r

iterations

worst
mean
true mean
true median

0 5 10 15 20

10
−5

10
0

10
2

lo
g−

sc
al

e
er

ro
r

iterations

Fig. 2. The behavior of the objective with different number of iterations. The first two curves are derived from worst-case performances over C on different
data sets at the 20th iteration. The true mean and median are derived over all data sets and all values of the tradeoff parameter C.

TABLE I
THE NUMBER OF EXAMPLES AND FEATURES IN EACH DATA SET. NUMBER

OF EXAMPLES IN FORMAT X/Y DENOTES X EXAMPLES IN THE GIVEN
TRAINING SET AND Y EXAMPLES IN THE GIVEN TEST SET.

DATA SET EXAMPLES FEATURES
REUTERS 23,149/199,328 47,236
GISETTE 6,000/1,000 5,000
DLBCL 77 7,070
LEUKEMIA 72 5,147
LUNG 203 12,600
PROSTATA 102 12,533
SRBCT 83 2,308
SONAR 208 59

should guarantee that there is a difference between accuracies
of 1-norm and 2-norm SVM.

1) Datasets: Reuters2 is a text categorization data set
and Reuters-sampled is a synthetic problem domain
obtained from it; each experiment samples 250 examples
from the original training set. We form a binary classifi-
cation task by training the CCAT category versus all other
categories. Gisette3 is a digit classification task, which
contains many irrelevant features, because 50% of its features
are synthetic noise features. We also experiment with several
gene expression data sets4 which should have many irrelevant
features. Recall that the gene expression data sets had a slow
convergence in the experiments of the previous section. The
data sets are are DLBCL, Leukemia, Lung, Prostata, and
SRBCT. Additionally we experiment on classical Sonar data
set from UCI. Table I summarizes the properties of these data
sets.

2) Experimental setup: For Reuters and Gisette we
use the given split into training set and a test or validation set.
For the other domains we perform 30 experiments, in which
we randomly split the data set half and half into a training
set and a test set. We select the parameter C with 5-fold
cross-validation. Different iterations of the RW algorithm may
use different C. The best value for C is the rounded-down

2Available from http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
3Available from http://www.nipsfsc.ecs.soton.ac.uk/datasets/
4Available from http://www.ailab.si/orange/

median of those values that attain the best cross-validated
error. The range of C is the powers of ten in [10−9, 102]
for gene expression data sets and in [10−5, 105] for the other
data sets (the best accuracy is on these intervals for all
algorithms). The 2-norm SVM solver is liblinear [13]. We
use default settings, except that the solver is set to L1-SVM
dual optimizer. The default settings include an additional bias
feature that has a constant value of 1. The 1-norm SVM is
solved with Matlab, as in the previous section. We train the
most frequent label versus the remaining labels, if the data set
contains more than two labels. Each example in the data set
Gisette is normalized to unit norm and each feature in the
gene expression data sets is normalized to zero mean and unit
variance.

Table II gives the results. Let us discuss a few observations.
First, the difference in accuracy during iterations is small in
Reuters, but large in Reuters-sampled. This suggests
that if a problem domain has a large number of examples
then the regularization has only a small effect. Second, the
best accuracy in gene expression data sets is in between the
solutions of 2-norm SVM and 1-norm SVM. In some of these
data sets the difference between 1-norm SVM and the RW
algorithm is surprisingly large. Friedman and Popescu [8]
make a similar observation in their experiments with linear
regression on both synthetic and proteomics data.

Of course, these experiments still leave open the question
on how to determine the right number of iterations. In our
experiments, a good number of iterations was easy to find
with cross-validation. We already perform a cross-validation
over the trade-off parameter C. Hence, we have an access to
a table that gives the cross-validated error for each value of
C and for each iteration.

C. The Effects of the Number of Relevant Features

The results in Table II suggest that the RW algorithm is
competitive with the 1-norm SVM already when run with a
low number of iterations. However, this evidence comes from
a relatively small number of problem domains. It is unclear
how the number of relevant features affects the performance.
Hence, we perform experiments on synthetic data in order to
shed some light on this issue.

TABLE II
CLASSIFICATION ACCURACIES OF THE RW ALGORITHM AND 1-NORM SVM RUNS WITH DIFFERENT NUMBERS OF ITERATIONS. THE EMPIRICAL
STANDARD DEVIATION OF THE ACCURACY IS GIVEN. THE i-TH ITERATION OF THE RW ALGORITHM IS DENOTED BY RW(i). FOR GISETTE AND

REUTERS OUR 1-NORM SVM SOLVER RUNS OUT OF MEMORY.

DATA SET 2-NORM SVM RW(2) RW(3) RW(5) RW(10) 1-NORM SVM
REUTERS 93.4 93.5 93.5 93.4 93.3 NA
REUTERS-SAMPLED 85.9 ± 0.2 84.9 ± 0.3 83.7 ± 0.3 82.2 ± 0.3 80.6 ± 0.3 72.8 ± 0.8
GISETTE 97.8 98.3 98.5 98.2 98.1 NA
DLBCL 68.6 ± 1.0 91.4 ± 0.7 93.2 ± 0.7 93.5 ± 0.8 91.7 ± 1.1 85.3 ± 1.3
LEUKEMIA 82.7 ± 1.0 95.2 ± 0.6 96.0 ± 0.5 95.8 ± 0.6 94.7 ± 0.8 90.1 ± 1.5
LUNG 92.9 ± 0.4 95.1 ± 0.3 95.0 ± 0.4 94.5 ± 0.5 93.8 ± 0.6 92.6 ± 0.5
PROSTATA 90.8 ± 0.6 91.4 ± 0.5 92.0 ± 0.5 92.5 ± 0.5 91.6 ± 0.6 88.5 ± 0.8
SRBCT 88.8 ± 1.1 98.1 ± 0.4 98.7 ± 0.3 98.0 ± 0.5 96.8 ± 0.6 95.7 ± 0.5
SONAR 73.3 ± 0.7 73.0 ± 0.6 73.1 ± 0.7 72.8 ± 0.8 72.6 ± 0.7 72.2 ± 0.8

We generate synthetic data sets as follows. A data set
consists of 100 examples with 200 features each. The examples
are equally split between the two binary labels (y = ±1). Each
label is distributed as a spherical unit-variance Gaussian. These
distributions are slightly apart, because we set their means to
be at a distance of three from each other. A parameter drel
tells how many relevant features a data set has. The difference
in means is equally divided into exactly drel features. Hence,
d − drel features are identically distributed in both of the
labels, and drel features are at different means 1.5 y/

√
drel.

Otherwise the experimental setting is similar to that in the
previous section. Figure 3 gives the results.

An important subtlety arose in the experiments, so we
present two graphs in Figure 3. In the left graph the 1-
norm SVM solver performs well when the number of relevant
features is high. This is not because 1-norm SVM objective
function is good in these problems. Rather this performance
is a property of a particular implementation. The reason is
that in these problems the optimal weight vector w was the
zero vector. If the optimal w is the zero vector and the solver
allows an approximation error, then the 1-norm objective does
not determine the resulting classifier. Rather, the behavior of
the solver determines which weight vector w it finds among the
feasible ones around the zero vector. Hence, a small difference
in w can result in huge difference in accuracy. In the synthetic
experiments with high number of relevant features the typical
1-norm SVM solution w had a 1-norm ‖w‖1 of 10−12 and a
hinge-loss of 67, but the generalization error was far from 0.5.

In the right graph we set the accuracy of all weight vectors
with 1-norm smaller than 0.0001 to 50% correct (which
equals the accuracy of zero weight vector) for cross-validation
purposes. This shows how the accuracy of the 1-norm SVM
dramatically changes. The 1-norm SVM is better only when
the data set has a single relevant feature, and even this
difference disappears if we execute two iterations with the
RW algorithm.

V. RELATED WORK AND DISCUSSION

A. Related Methods

Zhu et al. [23] put forward the 1-norm SVM and solved
the optimization problem with a linear program. A linear pro-

gramming solution is only available for the L1-SVM objective
function, because the L2-SVM objective function is non-linear.
Mangasarian [17] describes a specialized solver for the 1-norm
linear programming problem. In it the problem is transformed
to an unconstrained quadratic problem for which there are
efficient solvers.

Breiman [4] is to the best of our knowledge the first one to
suggest a RW algorithm similar to the one studied in this paper.
His non-negative garotte solves a linear regression problem by
first solving an ordinary least squares problem, which gives
a solution w. This solution is then used to weight another
regression problem, where the ith feature is weighted with
wi. The solution to this new regression problem is limited
to a positive weight vector, and the sum of these weights is
constrained.

Another algorithm that weights features is the hybrid SVM
studied by Zou [24]. It first computes 2-norm SVM solution w.
Then it weights the feature i with |wi|(parameter) and solves this
new problem with 1-norm SVM solver. In Zou’s experiments
the hybrid SVM performed better than 1-norm SVM.

Several papers study applications of optimizing the 1-norm
regularized error with a 2-norm regularized solver. Grandvalet
and Canu [11] derive an algorithm that finds a non-linear
kernel in which each feature in the input space is automatically
weighted to match relevance. Argyriou et al. [1], [2] apply the
method to the problem of multitask learning. Rakotomamonjy
et al. [19] use a similar method to learn at the same time a
classifier and a kernel which is a convex combination of other
kernels. This is called the multiple kernel problem.

B. Discussion on Performance

The iterative RW algorithm relies on a 2-norm SVM solver.
Hence, the performance of this solver is important. Recently
several fast approximate solvers for the linear 2-norm SVM
have been developed. Svm-perf [16] is the first linear-
time linear SVM solver. Another, more recent cutting plane
algorithm is OCAS [7]. Shalev-Shwartz et al. [21] as well
as Bottou and Bousquet [3] propose algorithms based on
online stochastic gradient descent. These algorithms do not
converge well to an exact solution, but they quickly find an
approximate solution. Chapelle [5] studies a Newton method

1 5 10 60 120 160 200
0

0.1

0.2

0.3

0.4

er
ro

r

relevant features

All solutions

2−norm SVM
RW
1−norm SVM

1 5 10 60 120 160 200
0

0.1

0.2

0.3

0.4

er
ro

r

relevant features

No solutions with small norm

Fig. 3. How the error behaves as a function of relevant features. The number of features is 200. The solvers are the 2-norm SVM, the RW algorithm with
one iteration, and the 1-norm SVM.

and liblinear [13] is a package containing several algo-
rithms, including a L1-SVM solver based on dual coordinate
descent. These algorithms scale easily to large data sets
containing hundreds of thousands training examples. Typically
the training time is bounded by the time needed to read the
input from a file.

In this paper we did not perform comprehensive experiments
on the run time of the RW algorithm. Instead we gave evidence
on how many iterations the algorithm needs. Thus, we can
approximate the run time in units of “2-norm SVM problem”.
This is more informative than measuring run times which are
influenced by factors such as the termination criteria of the
optimization and whether we use a subsample of the training
set.

The experiments in Section IV were performed by repeat-
edly calling the same implementation of either svmlight or
liblinear with differently weighted inputs. However, we
also integrated the RW algorithm directly to liblinear to
assure ourself that our intuitions on performance are correct.
As an example, ca. 200,000 examples from the Reuters data set
took 33 seconds to train with a 2-norm SVM and 38 seconds
to train with one additional weighted iteration (we set C to
one). The fact that reading the data from a file took 27 seconds
explains the small difference between these run-times. Hence,
weighting the features did not significantly affect the run-time.
The computer on which we ran the experiments was a 2,8 Ghz
Pentium 4 with 1 GB of main memory.

In general, L1-regularized optimization has a reputation for
being more difficult than L2-regularized optimization. The
non-differentiability of 1-norm is not as such a sufficient
reason for this, because we can approximate the absolute
value |x| with a smoother function like

√
x2 + ε, where

ε > 0 is a small value. However, the current theoretical upper
bounds [12] in online convex optimization suggest that the
convexity of the objective is related to how quickly an online
stochastic gradient descent algorithm converges.

For instance, consider the special case of SVMs. Shalev-
Shwartz et al. [21] derived an upper bound on the number of
iterations that an online stochastic gradient algorithm needs

in order to arrive to a specified additive error. Their upper
bound depends on the fact that the SVM objective is strongly
convex. A λ-strongly convex function is one which cannot
be approximated anywhere well with a linear function. More
precisely, a linear approximation at the point x of λ-strongly
convex function must differ from the true value by at least
λ ‖x− x′‖2 /2 at any other point x′. Bottou and Bousquet [3]
arrive to a similar conclusion. They, however, use unrelated
methods. They show that the convergence depends on the cur-
vature of the objective function near the optimum (they define
the curvature using the Hessian of the objective function). Note
that both of these results depend on defining the objective
function in such a way that the error in it does not scale with
the number of training examples m.

VI. CONCLUSION

We studied how a simple iterative re-weighting algorithm
performs in problem domains with irrelevant features. In
theory the re-weighting algorithm converges to a value that is
close to the 1-norm SVM solution. The experimental results
indicated that a small number of iterations is enough to attain
the best accuracy. In fact, in many problem domains the re-
weighting algorithm outperformed the 1-norm SVM and the
standard SVM. However, a close convergence to 1-norm SVM
might require many more iterations. This work suggests that
we can use popular 2-norm SVM solvers to derive a solver
that is more resilient to irrelevant features. Hence, the good
properties of these solvers are available for problem domains
that contain such.

In the synthetic experiments we faced a problem in the
comparison of the algorithms. The accuracy of our 1-norm
SVM solver was high even in problem domains with many
relevant features. This was not because the objective function
of the 1-norm SVM was good. Rather, an approximation
in the solution vector around the zero made all solutions
feasible. Hence, the performance depended on the particular
implementation.

REFERENCES

[1] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature
learning. In B. Schölkopf, J. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems, volume 19,
pages 41–48. MIT Press, Cambridge, MA, 2007.

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task
feature learning. Machine Learning, 73(3):243–272, 2008.

[3] L. Bottou and O. Bousquet. The tradeoffs of large scale learning.
In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances
in Neural Information Processing Systems, volume 20, pages
161–168. NIPS Foundation, 2008.

[4] L. Breiman. Better subset regression using the nonnegative
garrote. Technometrics, 37(4):373–384, 1995.

[5] O. Chapelle. Training a support vector machine in the primal.
Neural Computation, 19(5):1155–1178, 2007.

[6] M. A. T. Figueiredo. Adaptive sparseness for supervised
learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25:1150–1159, 2003.

[7] V. Franc and S. Sonnenburg. Optimized cutting plane algorithm
for support vector machines. In Proceedings of the 25th
International Conference on Machine Learning, pages 320–327,
New York, NY, 2008. ACM.

[8] J. H. Friedman and B. E. Popescu. Gradient directed regular-
ization for linear regression and classification. Technical report,
Stanford University, 2004.

[9] Y. Grandvalet. Least absolute shrinkage is equivalent to
quadratic penalization. In Perspectives in Neural Computing,
volume 1, pages 201–206. Springer, 1998.

[10] Y. Grandvalet and S. Canu. Outcomes of the equivalence of
adaptive ridge with least absolute shrinkage. In D. A. C. Michael
J. Kearns, Sara A. Solla, editor, Advances in Neural Information
Processing Systems, volume 11, pages 445–451, Cambridge,
MA, USA, 1999. MIT Press.

[11] Y. Grandvalet and S. Canu. Adaptive scaling for feature
selection in SVMs. In S. T. S. Becker and K. Obermayer, editors,
Advances in Neural Information Processing Systems, volume 15,
pages 553–560. MIT Press, Cambridge, MA, 2003.

[12] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret
algorithms for online convex optimization. Machine Learning,
69(2-3):169–192, 2007.

[13] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sun-
dararajan. A dual coordinate descent method for large-scale lin-
ear SVM. In Proceedings of the 25th International Conference
on Machine Learning, pages 408–415, New York, NY, 2008.
ACM.

[14] C. W. Hsu, C. C. Chang, and C. J. Lin. A practical guide
to support vector classification. Technical report, Department
of Computer Science and Information Engineering, National
Taiwan University, Taipei, 2003.

[15] T. Joachims. Making large-scale support vector machine learn-
ing practical. In Advances in Kernel Methods: Support Vector
Learning, pages 169–184. MIT Press, Cambridge, MA, USA,
1999.

[16] T. Joachims. Training linear SVMs in linear time. In Proceed-
ings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 217–226, New
York, NY, 2006. ACM.

[17] O. L. Mangasarian. Exact 1-norm support vector machines via
unconstrained convex differentiable minimization. Journal of
Machine Learning Research, 7:1517–1530, 2006.

[18] A. Y. Ng. Feature selection, L1 vs. L2 regularization, and
rotational invariance. In Proceedings of the 21st International
Conference on Machine Learning, pages 78–85, New York, NY,
2004. ACM.

[19] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet.
SimpleMKL. Journal of Machine Learning Research, 9:2491–
2521, November 2008.

[20] M. Schmidt, G. Fung, and R. Rosales. Fast optimization
methods for L1 regularization: A comparative study and two new
approaches. In Proceedings of the 18th European Conference
on Machine Learning, pages 286–297, Berlin, Heidelberg, 2007.
Springer-Verlag.

[21] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal

Estimated sub-GrAdient SOlver for SVM. In Proceedings of
the 24th International Conference on Machine Learning, pages
807–814, New York, NY, 2007. ACM.

[22] R. Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58:267–288,
1996.

[23] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support
vector machines. In S. Thrun, L. Saul, and B. Schölkopf, editors,
Advances in Neural Information Processing Systems, volume 16.
MIT Press, Cambridge, MA, 2004.

[24] H. Zou. An improved 1-norm SVM for simultaneous classifi-
cation and variable selection. In M. Meila and X. Shen, editors,
Proceedings of the 11th International Conference on Artificial
Intelligence and Statistics, volume 2, pages 675–681, 2007.

APPENDIX

In this Appendix we prove Theorems 2 and 3 presented in
Section III-B.

A. Proof of Theorem 2

First use the definition of unew:

‖unew‖1 + E(unew) = |w| · |v|+ Ev(w).

Then apply the Cauchy-Schwartz inequality on |w| · |v|:

|w| · |v|+ Ev(w) < ‖w‖ ‖v‖+ Ev(w).

Use the assumption that 1
2 ‖w‖

2
+ Ev(w) <

1
2 ‖v‖

2
+ Ev(v)

to obtain:

‖w‖ ‖v‖+ Ev(w)

< ‖w‖ ‖v‖+ 1

2

(
‖v‖2 − ‖w‖2

)
+ Ev (v) .

Note that this step guarantees that the 1-norm objective will
decrease by at least as much as the weighted objective.

Shuffle some terms in the latter expression to obtain:

‖v‖2 − 1

2

(
‖v‖2 − 2 ‖w‖ ‖v‖+ ‖w‖2

)
+ Ev (v) .

Complete the square which gives us the following:

‖v‖2 − 1

2
(‖v‖ − ‖w‖)2︸ ︷︷ ︸

≥0

+Ev (v) < ‖v‖2 + Ev (v) .

Now, the definition of v was that u = v ⊗ |v| which implies
that E(u) = Ev(v). So,

‖v‖2 + Ev (v) = ‖u‖1 + E (u) .

The claim follows.

B. Proof of Theorem 3

Our goal is to find a lower bound to the difference

1

2
‖u‖u + E(u)︸ ︷︷ ︸

f(0)

−

1

2
‖u+ c h‖u + E(u+ c h)︸ ︷︷ ︸

f(c)

for some value of c. We will do this in three steps. In step 1
we will derive an upper bound g(c) to f(c). In step 2 we will

compute c′ ≥ 0 that minimizes the upper bound g(c′). In step
3 we will find that for c′′ = min(c?, c′):

f(0)− f(c′′) ≥ f(0)− g(c′′) ≥ 1

2
c′′2

and the claim follows.
Step 1. First write out the norm

1

2
‖u+ c h‖u

=
1

2

d∑
i=1

(
u2i
|ui|

+ 2c sign (ui)hi +
c2h2i
|ui|

)

=
1

2
‖u‖1 + c

(
d∑

i=1

sign (ui)hi

)
+

1

2
c2. (5)

Approximate E(u + c h) as a function of c. Use Jensen’s
inequality on the convex error function to obtain an upper
bound

E(u+ c h) ≤
(
1− c

c?

)
E(u) +

c

c?
E(u+ c? h). (6)

This upper bound holds for all c on interval from zero to c?.
Define the upper bound g(c) as the sum of (5) and (6).

Step 2. Minimize the convex upper bound g(c) with respect
to c to yield the following value c′:

c′ = −

(
d∑

i=1

sign (ui)hi

)
+

1

c?
(E(u)− E(u+ c? h)).

Now use the assumption that u+ c? h is a better solution than
u to the L1-regularized error:

‖u‖1 + E(u)

> ‖u+ c? h‖1 + E(u+ c? h)

≥ ‖u‖1 + c?

(
d∑

i=1

sign (ui)hi

)
+ E(u+ c? h). (7)

Inequality (7) is true, because if signs of ui and hi are the
same, then |ui+c? hi| = |ui|+c?|hi|. Otherwise, |ui+c? hi| ≥
|ui| − c?|hi|. Inequality (7) implies that:

d∑
i=1

sign (ui)hi <
1

c?
(E (u)− E (u+ c? h)) .

Plugging the above inequality to (7) shows that c′ is positive.
Hence, (6) holds for the minimum of c′ and c?.

Step 3. Set c′′ = min(c?, c′). As a final step, compute the
difference f(0)− g(c′′). Do this in parts. First, (5) shows that

1

2
‖u‖u −

1

2
‖u+ c′′ h‖u = −c′′

(
d∑

i=1

sign (ui)hi

)
− 1

2
c′′2.

Second, (6) shows that

E(u)− E(u+ c′′ h) ≥ c′′

c?
(E(u)− E(u+ c? h)).

Hence we obtain a lower bound:

−c′′
(

d∑
i=1

sign (ui)hi

)
+
c′′

c?
(E(u)− E(u+ c? h))− 1

2
c′′2

= c′′ c′ − 1

2
c′′2 ≥ 1

2
c′′2,

because of the definition of the c′.

