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Abstract—This paper studies how useful the standard 2-
norm regularized SVM is in approximating the 1-norm SVM
problem. To this end, we examine a general method that is
based on iteratively re-weighting the features and solving a
2-norm optimization problem. The convergence rate of this
method is unknown. Previous work indicates that it might
require an excessive number of iterations. We study how well
we can do with just a small number of iterations. In theory the
convergence rate is fast, except for coordinates of the current
solution that are close to zero. Our empirical experiments
confirm this. In many problems with irrelevant features,
already one iteration is often enough to produce accuracy as
good as or better than that of the 1-norm SVM. Hence, it seems
that in these problems we do not need to converge to the 1-norm
SVM solution near zero values. The benefit of this approach is
that we can build something similar to the 1-norm regularized
solver based on any 2-norm regularized solver. This is quick to
implement and the solution inherits the good qualities of the
solver such as scalability and stability.

I. INTRODUCTION

Minimizing empirical error over some model class is a

basic machine learning approach which is usually comple-

mented with regularization to counterattack overfitting. The

support vector machine (SVM) is an approach for building a

linear separator, which performs well in tasks such as letter

recognition and text categorization. In this paper the linear

SVM is taken to solve the following minimization problem:

min
w

1

2
‖w‖

2

︸ ︷︷ ︸

regularizer

+C

m∑

i=1

loss(yi, fw(xi))

︸ ︷︷ ︸

error

. (1)

Here {xi, yi}
m
i=1 ∈ R

d × {−1, 1} is a training set of

examples xi with binary labels yi. The classifier fw(x)
that we wish to learn is w · x (plus unregularized bias, if

necessary), where w ∈ R
d is the normal of the separating

hyperplane. The function loss(y, f(x)) is the hinge loss

max(0, 1 − y f(x)) (L1-SVM), or its square (L2-SVM).

The squared 2-norm ‖w‖
2

is not always the best choice as

the regularizer. In principle the 1-norm ‖w‖1 =
∑d

i=1 |wi|
can handle a larger number of irrelevant features before

overfitting [1]. In the context of least-squares regression

Tibshirani [2] gives evidence that L1-regularization (lasso

regression) is particularly well-suited when the problem

domain has small to medium number of relevant features.

However, for a very small number of relevant features a

subset selection method outperformed L1-regularization in

these experiments and for a large number of relevant features

the L2-regularization (ridge regression) was the best.

In a 1-norm SVM [3] the regularizer is the 1-norm

‖w‖1. The resulting classifier is a linear classifier without

an embedding to an implicit high-dimensional space given

by a non-linear kernel. Some problem domains do not

require a non-linear kernel function. For example, this could

be the case if the input dimension is already large [4].

Furthermore, we can try to map the features to an explicit

high-dimensional space if the linear classifier on original

features is not expressive enough.

In this paper we study a simple iterative scheme which

approaches the 1-norm SVM by solving a series of standard

2-norm SVM problems. Each 2-norm SVM solves a problem

where the features are weighted depending on the solution

of the previous 2-norm SVM problem. Hence, we will refer

to this algorithm as the re-weighting algorithm (RW). More

generally, we can apply it to minimize any convex error

function regularized with 1-norm.

In this scheme most of the complexity resides in the

regular SVM solver. Hence, the desired features of any

standard SVM solver are readily available. Such features

include performance, scalability, stability, and minimization

of different objective functions (like L1-SVM and L2-SVM).

Several fast approximate solvers for linear SVMs have been

proposed recently [5], [6]. They are sufficiently quick to

justify solving several linear SVM problems for a single 1-

norm SVM problem. For example, Pegasos [5] trains the

Reuters data set with ca. 800,000 examples and 47,000

sparse features in five seconds (not counting the time to read

the data to memory).

Our contribution is three-fold. First, we provide theoret-

ical results on the speed of the convergence. It is known

that similar optimization methods are equivalent to the 1-

norm solution [7]. Unfortunately, the convergence rate is

unknown. Neither we are able to prove hard bounds on it,

but we can, though, provide intuition on the behavior of

the convergence. More precisely, we will lower bound the

decrease of the 1-norm objective in one iteration. This lower

bound is higher when the current solution is poor in terms

of the 1-norm objective function. On the other hand, the



bound also depends on our current solution: it shows that

the convergence is slow on coordinates that are already near

zero.

As the second contribution we experimentally demon-

strate the efficiency of the resulting algorithm in the specific

applications of the SVMs. Because theoretical results do not

guarantee the speed of convergence, we experiment on how

many iterations one needs to run the algorithm. Previous

work [8] has suggested that a similar algorithm needs up to

200 iterations to converge in the case of the multinomial lo-

gistic regression. However, the experiments are complicated

by the fact that minimizing the objective is merely a proxy of

the real target — generalization accuracy. When measuring

accuracy, the 1-norm SVM solution does not necessarily give

the best performance on problems with irrelevant features.

Each iteration in the RW algorithm solves an optimization

problem. Thus, the accuracy of the solution given by any

iteration may be good even if it has not yet reached the

1-norm SVM optimum. In fact, previous work [9] argues

that the best performance is often somewhere between the

1-norm and 2-norm optima.

Finally, we provide a patch to liblinear [6] which

implements the RW algorithm.

The structure of this paper is as follows. Section II

presents the algorithm and provides both intuition and theory

on why it works. Section III concerns empirical behavior

of the algorithm, including results on the speed of conver-

gence and how the number of relevant features affects the

performance. In Section IV we discuss previous work and

performance. Finally, Section V concludes this work.

II. THE RE-WEIGHTING ALGORITHM

Algorithm 1 re-weights the features in each iteration,

which makes it possible to use the SVM solver as a

black-box. In short, during t-th iteration the RW algorithm

multiplies the feature i with a weight v
(t)
i . Then it obtains a

2-norm SVM solution w from these weighted features. The

new weights v
(t+1)
i are set to

√

|wiv
(t)
i |.

We could improve the performance of the algorithm

by tailoring the SVM solver. Here we are interested in

simplicity rather than performance optimizations that have

unclear value. Note that the algorithm is in fact oblivious to

the choice of the error function, so the SVM solver could

be either L1-SVM or L2-SVM (or any other convex error

for that matter).

A. Intuition

Figure 1 gives a graphical justification for the benefits of

L1-regularization over L2-regularization. In it the contour

of the red tilted square finds a sparser solution, because

it is more spiky in directions where the weights are zero.

The blue dashed ellipse shows what effect weighting of the

features has. If weighted correctly, the optimization with the

Algorithm 1 1-norm SVM via 2-norm SVM

Input: a training set {(xi, yi)}m
i=1 and number of itera-

tions N .

Output: a weight vector w.

Initialize vector v(1) to all ones.

for t = 1 to N do

for each example xi do

for each coordinate j do

Set x
′i
j := xi

jv
(t)
j .

end for

end for

w(t) :=
solution to SVM with examples {(x

′i, yi)}m
i=1.

for each coordinate i do

Set v
(t+1)
i :=

√

|w
(t)
i v

(t)
i |.

end for

end for

for each coordinate i do

Set wi := w
(N)
i v

(N)
i .

end for

Return w

Figure 1. 2-norm contour as the black circle, 1-norm as the red tilted
square, and scaled 2-norm with the blue dashed ellipse.

squeezed ellipse will approximate L1-regularized solution

better than the L2-regularized one.

What is not apparent in Figure 1 is that if we know a

non-optimal feasible point, then we can always choose the

relative lengths of the axes of the ellipsis so that the L1-

regularized objective value will decrease. This will be shown

in the following theory section.

Remark: Figure 1 also suggests that the RW algorithm

has difficulties to converge a coordinate to zero, because

of the dull corners of the squeezed ellipse. The following

theory section will also quantify this effect.

B. Theory

For vectors w and v we use w ⊗ v to denote an element-

wise product (Hadamard product), where the ith coordinate

(w ⊗ v)i is wivi. The absolute value |w| of a vector w is



a vector containing the absolute values the components of

the original vector: |w|i = |wi|. The error function E(w)
denotes the error given by a weight vector w. The modified

error function Ev(w) denotes the error, where features are

weighted with |v|, i.e., Ev(w) = E(w ⊗ |v|). When the

specific norm of ‖w‖ is not indicated, it is always the 2-

norm.

1) 1-norm objective decreases if 2-norm objective of the

weighted problem decreases: The following theorem gives

a partial motivation for the minimization over weighted

features. However, it does not guarantee that we find a better

solution in each iteration. The theorem assumes that our

current solution is a vector v ⊗ |v|. We then minimize over

the weighted problem where the weight on the ith feature is

|vi|. Now, one possible solution to the weighted problem

is to set the solution w to v. Then the new solution to

the original problem equals the previous solution v ⊗ |v|.
However, Theorem 1 tells that if the minimization finds a

solution w to the weighted problem that has better 2-norm

regularized objective function value, then w⊗ |v| is a better

solution to the unweighted 1-norm regularized problem.

Theorem 1. If u = v ⊗ |v|, unew = w ⊗ |v|, and

1

2
‖w‖

2
+ Ev(w) <

1

2
‖v‖

2
+ Ev(v), (2)

then unew is a better solution to the L1-regularized optimiza-

tion than u:

‖unew‖1 + E(unew) < ‖u‖1 + E(u).

Furthermore, the 1-norm objective decreases by at least as

much as the weighted objective in (2).

The proof of Theorem 1 will appear in the full version of

this paper.

2) Convex error function guarantees that the 2-rnom

objective of the weighted problem decreases: Theorem 1

does not state that we will find a vector w with smaller

weighted objective value than v even if there is a solution u⋆

with a smaller value to the L1-regularized error. Theorem 2,

though, will show that an iteration finds a solution with

smaller weighted objective value. The theorem assumes that

the error function is convex and that the current solution

has no zero in the coordinates, where u⋆ has a non-zero

value. Therefore, Theorems 1 and 2 together state that an

iteration of the RW algorithm decreases the value of the

L1-regularized objective function.

We will use a scaled 2-norm ‖w‖u =
∑d

i=1 w2
i /|ui|. A

substitution w := w′ ⊗ |v| shows that regularization with

‖w‖u /2 equals the weighted objective ‖w′‖
2
/2 + Ev(w′),

if u = v ⊗ |v|. Intuitively ‖w‖u approximates ‖w‖1 in a

neighborhood of u, which yields the following theorem.

Theorem 2. Let h be a vector which is normalized so that

‖h‖u = 1. Let vector c⋆ h, where c⋆ is a scalar, denote

any direction in which the L1-regularized objective value

decreases when starting from u. Hence,

‖u + c⋆ h‖1 + E(u + c⋆ h) < ‖u‖1 + E(u).

Then the weighted objective function decreases to that same

direction, i.e., there is a scalar c > 0 such that

1

2
‖u + c h‖u + E(u + c h) +

1

2
c2 ≤

1

2
‖u‖u + E(u).

More precisely, the step size c is at least the minimum of c⋆

and

−

(
d∑

i=1

sign (ui) hi

)

+
1

c⋆
(E (u) − E (u + c⋆ h)) .

The proof of Theorem 2 is also given in the full version

of this paper.

Theorem 2 gives us some insight to the speed of con-

vergence. It and Theorem 1 together show that the 1-norm

objective function decreases by at least c2/2 in one iteration.

Let us now derive a more intuitive approximation to the

expression of the step size c. If we assume that for all i the

signs of hi and ui differ, then −c⋆
(
∑d

i=1 sign (ui) hi

)

=

‖u‖ − ‖u + c⋆ h‖1. This approximation is good, if the 1-

norm of the solution is an important factor in the optimiza-

tion. Hence,

c ' min

(
Obj (u) − Obj (u⋆)

c⋆
, c⋆

)

,

where Obj(x) is the 1-norm objective function. Thus, L1-

regularized error drops quickly if our current solution u is

poor in comparison to optimal u⋆. On the other hand, c has

an inverse dependence on c⋆. This implies that convergence

is slow along a coordinate, in which our current solution is

already close to zero. Therefore, it might be impossible to

obtain hard limits to the convergence rate, because the RW

algorithm has trouble in converging near-zero coordinates.

The next section experimentally tests how well we can

manage with only a small number of iterations.

III. EMPIRICAL BEHAVIOR OF RE-WEIGHTING

A. Speed of Convergence

Let us present empirical evidence on how fast the RW

algorithm converges to the 1-norm SVM solution. The

experiments were performed with 16 data sets selected

from UCI machine learning repository and Broad Institute

Cancer Program. The data sets from UCI are abalone,

glass, segmentation, australian, ionosphere,

sonar, bupa liver, iris, vehicle, wine, ecoli,

wisconsin, german, and page. The two data sets from

Broad Institute are leukemia and DLBCL.1

For each data set we let the regularization parameter C
obtain powers of ten from 10−3 to 103. In each iteration we

1Available from http://www.ailab.si/orange/.
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Figure 2. The behavior of the objective with different number of iterations. The first two curves are derived from worst-case performances over C on
different data sets at the 20th iteration. The true mean and median are derived over all data sets and all values of the tradeoff parameter C.

recorded the objective value of the 1-norm regularized L1-

SVM. For measuring the convergence we used svmlight

[10] with default arguments for most runs (see below for

a discussion on high values of C). We also measured the

optimal value of the objective. For this we used a linear

program and the linprog optimizer from Matlab (with

default settings this is the lipsol solver).

Figure 2 gives a summary of the findings. The

plotted objective value is (attained objective value −
optimal value)/(optimal value). For each data set, we se-

lected the worst convergence over C at the 20th iteration.

From these 16 curves we formed two curves, the worst-case

and the mean. Additionally, we show the mean and median

over all problem domains and values of C (true mean and

true median).

The plots show that in absolute terms the convergence

is fast on an average problem. We can see this from the

behavior of the true median. However, the worst-case curve

never decreases below 0.1. The worst convergence was

obtained for the gene expression data sets, which have

thousands of features out of which many are zero at the

optimum. Thus, the small non-zero errors over many features

lead to slow convergence in the objective.

We had a problem with svmlight for high values of

the trade-off parameter C. The objective we measure is the

primal objective. However, svmlight actually optimizes

the dual objective to a given error [10]. If zero hinge loss

is attainable, then the primal objective is unstable for high

values of the parameter C. This is because the difference

between hinge loss of 0 and 0.01 is large after being

multiplied with C = 1, 000. However, this does not appear

in the error of the dual. Therefore, we used more strict error

parameters in two of the problem domains (leukemia and

DLBCL) for value 100 of the parameter C.

B. Accuracy of Classifiers

Let us now turn our attention to our true objective:

building accurate classifiers. In this section we chart out how

quickly the accuracy changes during iterations. The exper-

iments include both problem domains with many relevant

Table I
THE NUMBER OF EXAMPLES AND FEATURES IN EACH DATA SET.

NUMBER OF EXAMPLES IN FORMAT X/Y DENOTES X EXAMPLES IN THE

GIVEN TRAINING SET AND Y EXAMPLES IN THE GIVEN TEST SET.

DATA SET EXAMPLES FEATURES

REUTERS 23,149/199,328 47,236
GISETTE 6,000/1,000 5,000
DLBCL 77 7,070
LEUKEMIA 72 5,147
LUNG 203 12,600
PROSTATA 102 12,533
SRBCT 83 2,308
SONAR 208 59

features and those that have many irrelevant features. This

selection criterion should make sure that there is a difference

between accuracies of 1-norm and 2-norm SVM.

1) Datasets: Reuters2 is a text categorization data set

and Reuters-sampled is a synthetic problem domain

obtained from it; each experiment samples 250 examples

from the original training set. We form a binary classifi-

cation task by training the CCAT category versus all other

categories. Gisette3 is a digit classification task, which

contains many irrelevant features, because 50% of its fea-

tures are synthetic noise features. We also experiment with

several gene expression data sets4 which should have many

irrelevant features. Recall that the gene expression data sets

had a slow convergence in the experiments of the previous

section. The data sets are are DLBCL, Leukemia, Lung,

Prostata, and SRBCT. Additionally we experiment on

classical Sonar data set from UCI. Table I summarizes the

properties of these data sets.

2) Experimental setup: For Reuters and Gisette we

use the given split into training set and a test or validation

set. For the other domains we perform 30 experiments, in

which we randomly split the data set half and half into

2Available from http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
3Available from http://www.nipsfsc.ecs.soton.ac.uk/datasets/
4Available from http://www.ailab.si/orange/



Table II
CLASSIFICATION ACCURACIES OF THE RW ALGORITHM AND 1-NORM SVM RUNS WITH DIFFERENT NUMBERS OF ITERATIONS. THE EMPIRICAL

STANDARD DEVIATION OF THE ACCURACY IS GIVEN. THE t-TH ITERATION OF THE RW ALGORITHM IS DENOTED BY RW(t). FOR GISETTE AND

REUTERS OUR 1-NORM SVM SOLVER RUNS OUT OF MEMORY.

DATA SET 2-NORM SVM RW(2) RW(3) RW(5) RW(10) 1-NORM SVM

REUTERS 93.4 93.5 93.5 93.4 93.3 NA
REUTERS-SAMPLED 85.9 ± 0.2 84.9 ± 0.3 83.7 ± 0.3 82.2 ± 0.3 80.6 ± 0.3 72.8 ± 0.8
GISETTE 97.8 98.3 98.5 98.2 98.1 NA
DLBCL 68.6 ± 1.0 91.4 ± 0.7 93.2 ± 0.7 93.5 ± 0.8 91.7 ± 1.1 85.3 ± 1.3
LEUKEMIA 82.7 ± 1.0 95.2 ± 0.6 96.0 ± 0.5 95.8 ± 0.6 94.7 ± 0.8 90.1 ± 1.5
LUNG 92.9 ± 0.4 95.1 ± 0.3 95.0 ± 0.4 94.5 ± 0.5 93.8 ± 0.6 92.6 ± 0.5
PROSTATA 90.8 ± 0.6 91.4 ± 0.5 92.0 ± 0.5 92.5 ± 0.5 91.6 ± 0.6 88.5 ± 0.8
SRBCT 88.8 ± 1.1 98.1 ± 0.4 98.7 ± 0.3 98.0 ± 0.5 96.8 ± 0.6 95.7 ± 0.5
SONAR 73.3 ± 0.7 73.0 ± 0.6 73.1 ± 0.7 72.8 ± 0.8 72.6 ± 0.7 72.2 ± 0.8

a training set and a test set. We select the parameter C
with 5-fold cross-validation. Different iterations of the RW

algorithm may use different C. The best value for C is

the rounded-down median of those values that attain the

best cross-validated error. The range of C is the powers of

ten in [10−9, 102] for the gene expression data sets and in

[10−5, 105] for the other data sets (the best accuracy is on

these intervals for all algorithms). The 2-norm SVM solver

is liblinear [6]. We use default settings, except that the

solver is set to L1-SVM dual optimizer. The default settings

include an additional bias feature that has a constant value

of 1. The 1-norm SVM is solved with Matlab, as in the

previous section. We train the most frequent label versus

the remaining labels, if the data set contains more than two

labels. Each example in the data set Gisette is normalized

to unit norm and each feature in the gene expression data

sets is normalized to zero mean and unit variance.

Table II presents the results. Let us discuss a few obser-

vations. First, the difference in accuracy during iterations

is small in Reuters, but large in Reuters-sampled.

This suggests that if a problem domain has a large number

of examples, then the regularization has only a small effect.

Second, the best accuracy on the gene expression data sets

is in between the solutions of 2-norm SVM and 1-norm

SVM. In some of these data sets the difference between

1-norm SVM and the RW algorithm is surprisingly large.

Friedman and Popescu [9] make a similar observation in

their experiments with linear regression on both synthetic

and proteomics data.

Of course, these experiments still leave open the question

on how to determine the right number of iterations. In our

experiments, a good number of iterations was easy to find

with cross-validation. We already perform a cross-validation

over the trade-off parameter C. Hence, we have an access

to a table that gives the cross-validated error for each value

of C and for each iteration.

IV. RELATED WORK AND DISCUSSION

A. Related Methods

Zhu et al. [3] put forward the 1-norm SVM and solved

the optimization problem with a linear program. A linear

programming solution is only available for the L1-SVM

objective function, because the L2-SVM objective func-

tion is non-linear. Mangasarian [11] describes a specialized

solver for the 1-norm linear programming problem. In it

the problem is transformed to an unconstrained quadratic

problem for which there are efficient solvers.

Breiman [12] is to the best of our knowledge the first one

to suggest a RW algorithm similar to the one studied in this

paper. His non-negative garotte solves a linear regression

problem by first solving an ordinary least squares problem,

which gives a solution w. This solution is then used to

weight another regression problem, where the i-th feature

is weighted with wi. The solution to this new regression

problem is limited to a positive weight vector, and the sum

of these weights is constrained.

Several papers study optimizing the 1-norm regularized

error with a 2-norm regularized solver. To the best of our

knowledge Grandvalet and Canu [7], [13] were the first to

suggest a connection between 1-norm regularization and 2-

norm regularization. They showed that 1-norm regularized

least squares regression equals 2-norm regularization of a

certain error function. However, their work does not give

the same updates as the ones in this paper. The more recent

work of Argyriou et al. [14], though, implies the updates

that we use.

B. Discussion on Performance

The iterative RW algorithm relies on a 2-norm SVM

solver. Hence, the performance of this solver is im-

portant. Recently several fast approximate solvers for

the linear 2-norm SVM have been developed, such as

Svm-perf [15], OCAS [16], online stochastic gradient

descent algorithms [5], [17], and liblinear [6]. These

algorithms scale easily to large data sets containing hundreds



of thousands training examples. Typically the training time

is bounded by the time needed to read the input.

In this paper we did not perform comprehensive exper-

iments on the run time of the RW algorithm. Instead we

gave evidence on how many iterations the algorithm needs.

Thus, we can approximate the run time in units of “2-norm

SVM problem”. This is more informative than measuring run

times which are influenced by factors such as the termination

criteria of the optimization and whether we use a subsample

of the training set.

The experiments in Section III were performed by repeat-

edly calling the same implementation of either svmlight

or liblinear with differently weighted inputs. How-

ever, we also integrated the RW algorithm directly to

liblinear to assure ourself that our intuitions on per-

formance are correct. As an example, ca. 200,000 examples

from the Reuters data set took 33 seconds to train with a

2-norm SVM and 38 seconds to train with one additional

weighted iteration (we set C to one). The fact that reading

the data from a file took 27 seconds explains the small

difference between these run-times. The computer on which

we ran the experiments was a 2,8 Ghz Pentium 4 with 1 GB

of main memory.

V. CONCLUSION

We have studied how a simple iterative re-weighting algo-

rithm performs in problem domains with irrelevant features.

In theory the re-weighting algorithm converges to a value

that is close to the 1-norm SVM solution. The experimental

results indicated that a small number of iterations is enough

to attain the best accuracy. In fact, in many problem domains

the re-weighting algorithm outperformed the 1-norm SVM

and the standard 2-norm SVM. However, a close conver-

gence to 1-norm SVM might require many more iterations.

This work suggested that we can use popular 2-norm SVM

solvers to derive a solver that is more resilient to irrelevant

features. Hence, the good properties of these solvers are

available for problem domains that contain such.
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