Visualizations for Software Development
Process Management

Timo LEHTONEN 2, Timo AHO ?, Kati KUUSINEN ® and Tommi MIKKONEN P

aSolita PLC, Akerlundinkatu 11, FI-33000 Tampere, Finland
b Department of Pervasive Computing, Tampere University of Technology,
Korkeakoulunkatu 1, FI-33720 Tampere, Finland

Abstract. Software development projects have increasingly been adopting new
practices, such as continuous delivery and deployment to enable rapid delivery of
new features to end users. Tools that are commonly utilized with these practices
generate a vast amount of data concerning various development events. Analysis of
the data provides a lightweight data driven view on the software process. We present
an efficient way of visualizing software process data to provide a good overall view
on the features and potential problems of the process. We use the visualization in a
case project that has become more agile by applying continuous integration and de-
livery together with development and infrastructure automation. We compare data
visualizations with information gathered from the development team and describe
how the evolution can be understood through our visualizations. The case project
is a good example of how a change from a traditional long cycle development to
a rapid cycle DevOps culture can actually be made in a few years. However, the
results show that the team has to focus on the process improvement continuously
in order to maintain continuous delivery all the time. As the main contribution, we
present a lightweight way to software process visualization. Moreover, we discuss
how such a heuristic can be used to track the characteristics of the target process.

Keywords. software visualization, continuous delivery, DevOps,

1. Introduction

Implementing a modern development tool chain calls for several technical enablers, such
as continuous integration [1] and smooth deployment [2]. In general, aim at the reduc-
tion of the time it takes from completed implementation to deployment has resulted in
DevOps [3] where developers and operators work as a team to deliver value to end users
with an intensive feedback loop.

In such a setting, where tools are constantly playing a major role in the fashion the
development advances, developers’ actions are reflected as recurring patterns like version
history commit, deployments and issue management events. These patterns form traces
to information systems. This software engineering data can be processed and mined in
the databases.

In this paper, we investigate such traces in the light of the evolution of the devel-
opment process. The paper is built on mined data from the issue management system
of an industrial project executed by Solita PLC, a Finnish software development and

consulting company that specializes in web software and business intelligence. We have
analyzed thousands of issue management system tasks in detail with a visual approach
to describe the actual changes in the development process. The project in question is a
public sector web-based data intensive software project that uses a set of typical software
development tools that have automatically generated data for analysis during the years.

In this study, we apply information visualization to demonstrate the evolution of
the software development process during a five year long period. During the time frame
both development tools and practices have evolved. In the beginning, the process could
be described with manual long-lasting implementation periods and the Scrum culture
approach. After five years, the approach has transformed to rapid cycles and automated
mechanisms for infrastructure with monitoring and quality assurance as an integral part
of daily development work. As a tool for analysis, we use visualizations of the data stored
in the issue management system. Furthermore, we collected the opinions regarding the
visualizations from the developers and the project manager of the case project. Our exact
research question can be formulated as:

RQ: How to demonstrate a software development process by using automatically
generated data?

The rest of this paper is structured as follows. In Section 2 we present the relevant
related work. We continue in Section 3 by going through the case study regarding the
transition between the different development models. Section 4 analyzes the result and
in Section 5 we discuss the results in more detail and finally, Section 6 draws some
concluding remarks.

2. Background

During the recent years, numerous software companies have invested considerable effort
in building and automating their development tool chain often referred to as ”Climbing
the Stairway to Heaven” [4]. The evolution of organizations for adopting continuous in-
tegration, continuous delivery and even continuous deployment [5] is often a step by step
procedure [4]. Continuous integration is a requirement for continuous delivery, which in
turn is a requirement for continuous deployment [6]. These strategies can then be applied
in transformation towards DevOps [9] and reliable, predictable release engineering [10].

This extensive infrastructure, needed to maximize development and deployment
speed as well as feedback collection mechanisms, commonly includes a version control
system, a build server, a test server, automated production installations, and number of
other tools to support development and management. These components form a deploy-
ment pipeline [5], which uses an automated set of tools from code to delivery. Feature-
driven development [7] is one approach for designing and delivering valuable changes
to a software. The development team often manages the features to be implemented in
an issue management system, for instance Jira'. The issue management data can then be
mined, for instance for software process improvement (SPI) [8] purposes.

Various methods are available for analyzing the software engineering data produced
by the tools. For instance, machine learning algorithms could predict forthcoming soft-
ware engineering events. In general, information visualization is a powerful method not

'https://www.atlassian.com/software/jira

just for presenting results of statistical analysis but also for exploratory purposes. In par-
ticular, good visualization can present large amounts of data in a relatively small space
and pinpoint insights of what to analyze further [11]. Visualizations amplify the capa-
bilities of the human brain [12] as they increase processing resources, reduce searches,
enable pattern detection, and perceptual inference operations. Moreover, visualizations
can expand the working memory used for problem solving [13].

In the literature, there are two major disciplines of visualization [15]. Scientific vi-
sualization refers to processing of physical data while information visualization refers to
processing of abstract data. However, the distinction between scientific visualization and
information visualization is not clear [15]. Moreover, software visualization is a term for
applying information visualization to the domain of software engineering [14]. Diehl et
al. [15] present the goal of software visualization as improving the productivity of the
software development process. They define software visualization as the visualization
of artifacts related to software and its development process. This covers a wide variety
of artifacts from program code and documentation to bug reporting and visualizing the
structure and behavior of the software. Software evolves over time through program code
changes to extend the functionality of the system or simply to remove bugs [15]. In a nar-
rower meaning, software visualization is often used interchangeably with program visu-
alization which means the visualization of the software as an executable program [16]. In
this sense, software visualization is related to visualization of computer programs. More-
over, according to Petre et. al [17], software visualization uses visual representations to
make software visible.

There are multiple examples of applying information visualization to data concern-
ing software development. Chuah et. al [18] use glyphs for viewing software project
management data. They applied a visual approach to highlight interesting patterns and
anomalies in the data set. Gall et. al [19] apply information visualization to study the
release history of a software system. They conclude that information visualization tech-
nologies can be effectively applied to the analysis of software evolution and to uncover
valuable information. Ohira et. al [20] collected data for software process improvement
from configuration management systems, mailing list managers and issue tracking sys-
tems and presented the data visually. They mention that real-time visualizations moti-
vated developers to fix bugs, since they were aware that there were still unresolved is-
sues. As a problem, they report that visualizations can be too complicated to understand.
In [21], the authors mine version control system data and examine how developers work
together. With the visualizations they are able to find interesting phases during the evo-
lution.

To our knowledge, there is a research gap in applying information visualization to
software engineering data. We have already studied the relationship of issue management
and other software engineering data in an earlier paper [22]. We developed a mash-up of
information from multiple sources including issue management system, version control
system data and monitoring platform. We applied visualizations to analyze the detailed
development process based on the development data.

3. Case Project

This research is based on mining software process data from an industrial project ex-
ecuted by Solita PLC?, a Finnish software development and consulting company. The
time frame we cover is five years during which both development tools and practices
have evolved. The evolution has started with long-lasting implementation periods and
manual deployment and moved to rapid cycles and automated mechanisms for infras-
tructure, monitoring, and quality assurance. The data we study is produced by a public
sector web-based data intensive software project that uses an issue management system
to manage the process. The teams uses the issue management system very intensively in
their daily work. The tool is used in in daily meetings and in communication with the
customer.

Over the years, there have been several changes in the infrastructure, practices, and
operations related to the system as described in Table 1.

Table 1. Major changes in the case project

2011 Dev / Ops Cl-server (Hudson) was taken to use

2012 Dev Scrambled production database dump (nightly dump
automatically available)
2013 Dev Build tool evolution (from Ant to Maven)
Dev Automatic database migration
2014 Dev Environment independent build (Jan)
Ops Scripted production deployment (Jan)
Ops Server configuration automation
(Ansible + Vagrant) (Nov)
2015 Dev Automatic database cloning
Ops Application sets to be installed declared in a text file
Ops Automatic deployment to customer acceptance

testing environment triggered by commits

Ops Interfaces for monitoring, smoke-testing,

and radiator

The changes in Table 1 are divided into categories “Dev”” and ”Ops”. If the changes
is related to development, the category is ”Dev”. For example, scrambled database dump
from the production in 2012 was a change that boosted development. Moreover, auto-
matic deployment to customer acceptance testing environment in year 2015 was a change
related to operations part of DevOps.

The team described that their development process consists of two parts. First, they
use a major project-based development cycle, where development is divided into projects
of length of 1-2 months each yielding a release. Second, the team uses a continuous minor
development cycle that consists of smaller releases. The goal of minor development is to
deliver smaller development items continuously to the production environment in short
cycles. The goal is not to fix bugs, but if there are any, they are fixed and deployed with
a short cycle.

’http://wuw.solita.fi

4. Results

We applied an interactive visualization tool [24,25] to a case project where a transfor-
mation from older software development methods towards a novel short cycle DevOps-
culture has happened during years. We developed the visualization tool further to contain
metadata based rules that enable the creation of reference process shapes which can be
compared with visual shapes generated from actual software project data. Next, we use
the tool to generate various views of the target process. We start by introducing the tool
output with an example.

4.1. Sample Issues View

Figure 1 presents issue states and three sample issues extracted from the issue manage-
ment system data. The initial state for an issue is Open.

.ﬁ[Open Hln Progress Resolved Review Closed Released

weekend

V—l‘—\
#3 4
#0 []
#1 1 []

A sample issue in progress for 3 hours

Figure 1. Issue management system states and three sample issues to demonstrate the visualization rules.

In Figure 1, the open state is presented with a dot in the beginning of the issue time
line on the left. The color of the dot is gray for issues with default priority and red color
indicates higher priority. For instance, issue #2 in Figure 1 has a higher priority.

Issue #2 was created to the issue management system first. The development of the
critical issue was started approximately one day after its creation. The developer changes
the state to In Progress, which is presented with yellow color. Then, apparently nothing
happened during the weekend, and finally, issue was done or Resolved after six days
of development. Then, in a few seconds, the issue was put to Review state and then
immediately Closed. Thus, no blue or pink color is visible for issue #2 . Issue #1 was put
to Resolved state (blue color) after three hours of development work. Then the issue went
to state Review (pink color), which means acceptance testing performed by the customer.

The issues are ordered from bottom to top according to the time stamp of Resolved
state. Thus, issue #1 is on the bottom, because it was resolved first. Then, issue #2 is in
the middle because and issue #3last, because it was the latest task that had In Progress
activity i.e. was resolved last. Next, we construct a reference process shape according to
these drawing and ordering rules to Figure 2 and then apply the visualization technique
to some tens of released issues presented in Figure 3.

4.2. Version Release View
Figure 2 presents the larger major release cycle and minor release cycles below it. The

reference process in this case has one major release and two minor releases during a few
weeks period.

Major release

Minor releases
Delivery Delivery Delivery
| | = | A, B
I Week 1 I Week 2 I ...V Weekn-1 I Week n

Figure 2. A reference process visualization that reflects issue management system states and the verbal de-
scription presented by the team.

Because of the ordering rules described in section 4.1, the reference process forms
a triangular shape. The release date of the major release forms a sharp edge to the right.
The released issues are drawn to the bottom of the diagram as a green bar which indicates
the amount of issues delivered. In the reference process diagram there are three versions
delivered — one major version and two minor versions. States In Progress and Resolved
are in the reference visualization drawn with equal length but in practice, their length
varies from seconds to weeks. Because the customer reviews many tasks at once, the
Review states form a shape of a stairway. The number of tasks in one release varies
significantly. The team stated in discussions that a total number some tens or hundred
tasks would be suitable for their needs.

The visualization in Figure 3 is an actual version released in 2014. The visualization
can be compared to the triangular reference process shape in Figure 2.

We can now point out some spots in the visualization that follow the reference vi-
sualization characteristics. The version contained over 50 issues that were released in
the end of October in one major release annotated in the figure with label #major. In
spot #first, the implementation of the first task belonging to the released version was
finished and the state then changed to Resolved (blue color). Approximately three weeks
later (the weekends are highlighted with translucent white color) the task then went to
review state (pink color) in the middle of October. The issue was released in the major
version (#major) among tens of other features. After the weekend, fix versions #fix1,

- #critical
s _ég
Py ——
. == =
#bug #minor-development
ks #major
=1
@
b
g
.
]
#ﬁX%
#bug #11X2 #fix3
= H=

Oct 2014 I Nov2014

Figure 3. Sample major version released that was released in the end of October 2014. Two fix versions and a
smaller minor development release are shown.

#fix2 and #£ix3 were released. Some of the tasks in #fix1 was a critical bug pointed
out with a red spot (#critical). In the mean time, there was also a parallel minor
version released in spot #minor on the bottom of the visualization. The minor version
contained approximately ten tasks. Moreover, in spot #bug there was a critical bug fix
deployed with a lead time of some hours.

Apr 2012 " Oct 2014

e ——— —
i il 'l e - !
SE=C ¥ Bug fix

=
]

Figure 4. The evolution of the process — in the past there was no minor parallel development, but nowadays
the team uses rapid cycle minor development.

B

g

Figure 4 presents an example of a change in the process. The sample release visual-
ization from Oct 2014 on the right shows that there is a minor release in parallel to the
major release. There was also a critical bug fix in the middle of October in 2014. When
we compare this visualization to the other visualization from Apr 2012 on the left, we
can point out three differences. Firstly, the earlier release visualization is missing a minor
release. However, there are bug fixes visible. Secondly, in the earlier visualization, work
estimates were made per issue, which is shown with character "W’ in the visualization.

Finally, there is no Review state (pink color) in the earlier release. The team took Re-
view state to use in September 2012. According to these simple visual observations, it is
known that the process has evolved during years. The team has found out a way to fulfill
the urgent needs of the customers with a short feedback cycle. Moreover, the focus of the
team has changed from work estimating to value adding activities.

4.3. Version Release Series View
Figure 5 presents the reference process shapes of a series of versions. The development

work of the previous version continues immediately as development work in the next
version. Continuous delivery is visible at the bottom of the diagram.

Next release .

—— |
RSO ReV
Major release cycle
y e
=]
_u | n | |

Figure 5. A series of reference process visualizations with certain major release cycle and continuous delivery
of parallel minor versions.

Figure 6 presents a wider perspective to the version presented in Figure 3. It is
possible to observe that there are multiple simultaneous development tasks going on in
the mean time in the upper part of the diagram. Furthermore, the number of delivered
features per day are presented in the bottom of the diagram. In spot #empty in February
2015, there is a break in the continuous delivery of features apparently because of the
giant version release on the top of the visualization annotated with label #major.

4.4. Evolution View

To get a total view of the process evolution, we combined an infographic presenting over
5 000 issues from years 2011 to 2015 into Figure 7. There is a reference process in the
bottom left corner of the infographic which gives a hint of what the layout of the actual
process shapes should be. In this case, the reference process consists of 150 issues re-
leased per version with major release cycle of two months, which accompanies the verbal
description in section 3. The combined bar chart presenting the throughput on the top of
the infographic presents the number of issues released per year half. For instance, dur-

#major

Simultaneous tasks
with the sample
release

Sample
release
. renos
o P 11 | " 1l 1 " I | I } " 3
I ur2014 I Aug 2014 I sep2014 Oct 2014 " "Nov2o14 | Dec2014 I Jan 2015 I Feb2015 | Mar2015 !

Figure 6. A wider perspective to the version released in figure 3
ing the first year half of 2012, a total number of approximately 500 issues was released.

Some of the issues released in the beginning of the year 2012 were developed during the
end of year 2011.

Throughput

500
400
300
200
100
9

Deployment Time

60
‘m m B = B B B

Evolution

— S R E——
e
—

= .l 2015h1

— — 2014h2
| 2014h1
2013h2

| #slope2
= .

Reference
N=150, release cycle = 2 months

] 1| 2011h1
Reference

Figure 7. An infographic of the evolution of the software development process during a five year period.

Annotation #slopel presents the slope factor reflecting the high throughput during
year 2012, which was higher than the slope factor #slope2 in the beginning of year
2013. The throughput of the team was higher in 2012 than it was in 2013. Naturally, the
throughput is affected by, for instance, the size of the tasks — if features are split to smaller

tasks than before, the throughput increases. Moreover, deployment time or the lead time
from Resolved to Released is shown in the middle of the infographic. Deployment time
answers to the following question: when a feature was done, how long did it take until the
feature was deployed to the production environment? When we observe the throughput
bar graph and the deployment time bar graph visually, the first half of year 2014 seems to
have low mean and median deployment time with a high throughput. If we then compare
the first half of year 2014 visually to for example the first year half of 2015, the difference
is clear. Year first year half of 2015 contains issues with very long tails, of even half year
long. This leads to longer deployment times.

5. Discussion

In this section we reflect the results to our research question: How fo demonstrate a
software development process by using automatically generated data?. We start by dis-
cussing the results and then reflect them to the opinions collected from the project man-
ager and the developers.

Tools play a major role in novel software development work. The data set of traces
the tool usage produces creates a great possibility to evaluate the evolution of the devel-
opment process. In this paper we combined tens of thousands of events related to issue
management system tasks to a compact visual format. From the visualizations, we are
able to recognize changes in the development process. For instance, the change towards
a development process with separate major and minor cycles can be recognized. More-
over, the continuous delivery phenomenon is made visible and can thus be evaluated. We
pointed out problems in continuous delivery with the new visual representation which
enables pattern recognition and quick inferences of the process. By combining simple
statistics concerning throughput and lead times into a single infographic, we are able to
evaluate the evolution of the process.

The visualizations produced by the tool presented in this paper forms a basis for soft-
ware process evaluation. However, data quality problems related to software engineering
data collected are many. Keim et al. [14] list the following error sources as threats to
visual data analysis: noise, outliers, low precision, missing values, coverage errors and
clones. Problems in raw data quality can jeopardize the conducted visualizations. More-
over, Rosli et al. in their mapping study [26] recognize several typical flaws for data
quality in software engineering research. In the context of this research, a typical source
for inaccurate data is the everyday usage of the issue management system. For instance,
a developer can forget to update the issue management system task state when the actual
development work starts or ends. This leads to inaccurate time stamps which affect the
visualization. However, we assume that the data is adequately accurate for visual analy-
sis. The data describes actual real-world events that were performed by persons partic-
ipating to the development of the software. In this sense, the data consists of facts and
thus the visualizations describe real-world events that actually happened.

The visualizations reveal interesting facts about the software development process.
In Figure 3 it is noteworthy that there are three fix releases after the major release. The
reason for them is unknown, but one obvious explanation is that targeting to zero bugs
is expensive. The team deploys features actively to the production environment with a
short feedback cycle and lets the end-users partly report of the bugs. Naturally, critical

and serious bugs have to be avoided. For instance, bugs in a global marketing system re-
lated to billing functions may have expensive consequences and thus have to be avoided.
However, bugs related to non-critical sections in a standard public sector software are
not life critical and thus partly acceptable.

We collected the opinions regarding the visualizations from the development team
in an informal manner. The project manager mentioned that the visualizations make it
possible to get an overview of the project with a glance. Especially the comparison of
different versions or projects is made possible. According to the project manager, such
a comparison would not be possible otherwise. As an improvement, the project manager
mentioned that textual labels to the versions would make the visualization easier to read.

The developers of the case project mentioned several points that the visualizations
present effectively. Firstly, the visualizations reveal low quality versions by presenting
the number of fix versions needed after the release. Secondly, tasks with exceptionally
long lead times are revealed. According to the developers, exceptionally long lead times
are always a signal of a problem in the development process. Thirdly, the visualization
reveals the amount of continuous bug fixing needed. The bug fixes are visible beneath
the versions released. Finally, the visualizations indicate if smaller versions are released
continuously or not. According to a developer, this reveals if value is produced to the
customer continuously or not.

Moreover, the visualizations were also criticized by the developers. They mentioned
that errors in the visualizations are many. For instance, some work may not be entered to
the issue management system and is thus not visible. Furthermore, one of the developers
mentioned unknown correlations as a problem. The interpretations made based on the
visualizations may not reflect what actually happened in the real world. Use of other
analysis methods to explain the events is needed. As a future work, one of the developers
was interested of the impact of using visualizations as a method for reflection in the
organization.

As future work, the visualizations techniques could be developed further. The tools
developed should be applied to more than one project context in order to evaluate gen-
eralizability of the results. Moreover, an analytic pipeline which could demonstrate the
status of the project in a continuous manner, could produce valuable information to the
project stakeholders. The data collection methods described in this paper can be auto-
mated. A tool chain covering all steps from the initial data collection to the visualization
of the data can be implemented.

6. Conclusions

In this paper we presented a novel visualization approach for illustrating software engi-
neering projects based on issue tracking tool data. It is important to note that this kind of
data is usually generated automatically as a side effect of the project when the tools are
used. Data is usually readily available and does not need any extra activities to be used
as a basis for visualizations.

Visualization is a light-weight way to get a good view on the overall development
process. In addition, it can be used to understand the process more deeply by showing
what kind of sprint lengths and common deployment times actually exist, for instance.
On the other hand, also anomalies like uncommonly long delivery times for some fea-
tures are easily noticeable.

We used the visualization to analyze a case software project. In this, we demonstrate
how evolution towards a more agile process can both be validated and the effects recog-
nized. The general lead time and feedback cycle has significantly reduced and amount of
waste in process diminished. The developed interactive visualization tool can be applied
in different scenarios and with different levels of abstraction.

As future work, we are interested in using this visualization tool for multiple projects
in different kinds of environments. This way we could visually recognize differences
in the patterns of software processes and ask if they actually exist. It would be very
intriguing to find some kind of general fingerprint for a healthy process and see how
actual process visualizations differ from it.

Acknowledgments

The work was supported by Tekes DIGILE Need for Speed project. We would also like
to thank Solita, the case project, and Finnish Broadcasting Company for support and the
possibility to perform this research.

References

[11 M. Fowler, “Continuous integration,” Available at http://www.martinfowler.com/articles/continuousIntegration.html,
2006, accessed 27.11.2015.

[2] J. Humble and D. Farley, Continuous delivery: Reliable software releases through build, test, and de-
ployment automation. Pearson Education, 2010.

[3] J. Humble and J. Molesky, “Why enterprises must adopt devops to enable continuous delivery,” Cutter
IT Journal, vol. 24, no. 8, p. 6, 2011.

[4] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the” stairway to heaven”—a mulitiple-case study
exploring barriers in the transition from agile development towards continuous deployment of software,”
in Software Engineering and Advanced Applications (SEAA), 2012 38th EUROMICRO Conference on.
IEEE, 2012, pp. 392-399.

[5] J. Humble and D. Farley, Continuous delivery: reliable software releases through build, test, and de-
ployment automation. Pearson Education, 2010.

[6] M. Fowler, “Continuous integration,” http://martinfowler.com/bliki/ContinuousDelivery.html, retrieved:
November 2014.

[7]1 S.R.Palmer and M. Felsing. A practical guide to feature-driven development. Pearson Education, 2001.

[8] W. A.Florac and A. D. Carleton. Measuring the software process: statistical process control for software
process improvement. Addison-Wesley Professional, 1999.

[9] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective. Addison-Wesley Profes-
sional, 2015.

[10] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release engineering and devops,” in Pro-
ceedings of the Third International Workshop on Release Engineering. 1EEE Press, 2015, pp. 3-3.

[11] E. R. Tufte and P. Graves-Morris, The visual display of quantitative information. — Graphics press
Cheshire, CT, 1983, vol. 2, no. 9.

[12] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in information visualization: using vision
to think. Morgan Kaufmann, 1999.

[13] D. A.Norman. Things that make us smart: Defending human attributes in the age of the machine. Basic
Books, 1993.

[14] D. Keim, F. Mansmann, J. Schneidewind, H. Ziegler et al., “Challenges in visual data analysis,” in
Information Visualization, 2006. IV 2006. Tenth International Conference on. 1EEE, 2006, pp. 9-16.

[15] S. Diehl, Software visualization: visualizing the structure, behaviour, and evolution of software.
Springer Science & Business Media, 2007.

[16] J. Stasko. Software visualization: Programming as a multimedia experience. MIT press, 1998.

[17]
[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

M. Petre, E. de Quincey, et al. A gentle overview of software visualisation. PPIG News Letter, pages
1-10, 2006.

M. C. Chuah and S. G. Eick. Information rich glyphs for software management data. Computer Graphics
and Applications, IEEE, 18(4):24-29, 1998.

H. Gall, M. Jazayeri, and C. Riva. Visualizing software release histories: The use of color and third
dimension. In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE International Conference on,
pages 99-108. IEEE, 1999.

M. Ohira, R. Yokomori, M. Sakai, K.-i. Matsumoto, K. Inoue, and K. Torii. Empirical project monitor:
A tool for mining multiple project data. In International Workshop on Mining Software Repositories
(MSR2004), pages 4246, 2004.

P. Weiligerber, M. Pohl, and M. Burch. Visual data mining in software archives to detect how developers
work together. In Mining Software Repositories, 2007. ICSE Workshops MSR’07. Fourth International
Workshop on, pages 9-9. IEEE, 2007.

A.-L. Mattila, T. Lehtonen, H. Terho, T. Mikkonen, and K. Systi, “Mashing up software issue manage-
ment, development, and usage data,” in Proceedings of the Second International Workshop on Rapid
Continuous Software Engineering. 1EEE Press, 2015, pp. 26-29.

J. Pearl, “Heuristics: intelligent search strategies for computer problem solving,” 1984.

T. Lehtonen, V.-P. Eloranta, M. Leppanen, and E. Isohanni, “Visualizations as a basis for agile software
process improvement,” in Software Engineering Conference (APSEC, 2013 20th Asia-Pacific, vol. 1.
IEEE, 2013, pp. 495-502.

A.-L. Mattila, T. Lehtonen, K. Systé, H. Terho, and T. Mikkonen, “Mashing up software management,
development, and usage data,” in RCoSE’15, 2015.

M. Rosli, “Can we trust our results? a mapping study on data quality,” in Software Engineering Confer-
ence (APSEC), 2013 20th Asia-Pacific, Dec 2013, pp. 116-123.

