
CoRED - Browser-based Collaborative Real-Time Editor
for Java Web Applications

Janne Lautamäki, Antti Nieminen, Johannes

Koskinen, Timo Aho, and Tommi Mikkonen

Tampere University of Technology

Korkeakoulunkatu 10, FI-33720, Tampere, Finland

{janne.lautamaki, antti.h.nieminen,

johannes.koskinen, timo.aho,

tommi.mikkonen}@tut.fi

Marc Englund

Vaadin Ltd.

Ruukinkatu 2-4, FI-20540, Turku, Finland

marc.englund@vaadin.com

ABSTRACT

While the users of completed applications are heavily

moving from desktop to the web browser, the majority of

developers are still working with desktop IDEs such as

Eclipse or Visual Studio. In contrast to professional

installable IDEs, current web-based code editors are simple

text editors with extra features. They usually understand

lexical syntax and can do highlighting and indenting, but

lack many of the features seen in modern desktop editors.

In this paper, we present CoRED, a browser-based

collaborative real-time code editor for Java applications.

CoRED is a complete Java editor with error checking and

automatic code generation capabilities, extended with some

features commonly associated with social media. As a proof

of the concept, we have extended CoRED to support Java

based Vaadin framework for web applications. Moreover,

CoRED can be used either as a stand-alone version or as a

component of any other software. It is already used as a part

of browser based Arvue IDE.

Author Keywords

Development tools, collaboration architectures, Vaadin.

ACM Classification Keywords

D.2.3.c. Program editors. D.3.2.h. Development tools.

H.5.3.c. Computer-supported cooperative work. J.8.s. Web

site management/development tools.

General Terms

Design, Experimentation.

INTRODUCTION

It is widely recognized that communication problems are a

major factor in the delay and failure of software projects

[2]. Numerous tools and methods have been proposed to

solve issues in different phases of projects, starting from

capturing requirements and ending at customer

documentation. One of the most promising approaches to

communication problems is offered by agile methods that

advocate close and frequent communication between the

client and the developers. In reality, this is often

implemented in the form of a team that shares the same

premises, encouraging frequent informal communication.

While the software development community is already

struggling with communication issues, the emerging

practice of global software engineering is raising even more

challenges: Software work is undertaken at geographically

separated locations across national boundaries in a

coordinated fashion, involving both real time (synchronous)

and asynchronous interaction [13]. This emphasizes the

need for timely, precise and uniform forms of

communication across the planet. Then, since the

development takes place at the global scale, also the

necessary communication should take place at such scale.

In almost any other field, the recent standard answer to

global communication problems has been the World Wide

Web, or simply the Web. Indeed, in a relatively short time,

the Web has become the platform for all types of

applications that enables real-time collaboration in forms

and scale that would have been difficult to imagine a few

decades ago. Recently, the collaborative capabilities of the

Web have been further enriched with a new invention –

social media. Facebook, Linkedin and other services enable

us to be in contact with the friends, colleagues, and

enthusiasts of different topics in real time all over the

planet.

While the users of completed applications are heavily

moving from desktop to browser, the majority of

developers are still working with desktop IDEs such as

Eclipse or Visual Studio. At present, most of the available

web-based code editors are just text editors with some extra

features like code highlighting, indentations and

collaboration clued on top and they are not yet as usable as

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
CSCW’12, February 11–15, 2012, Seattle, Washington, USA.

Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

the best of the desktop editors. However, the web editors

offer their own possibilities. For example, real-time

collaborative editing sits very naturally in the environment.

In addition, we get the general web-based application

benefits like automatic distribution, installation and

updating of applications [9] and independence on the

development environment. Steps towards the direction are

also proposed in [1, 14].

In this paper, we describe an experiment where the

collaborative capabilities of the Web in general and the

features of social media in particular are harnessed to help

solving some of the communication problems of software

development. As a concrete technical contribution, we

introduce the browser based editor CoRED
1
 (Collaborative

Real-time Editor) intended for collaborative real-time

editing of Java based source codes. CoRED contains

highlighting, indentation, semantic error checking and some

code completions. In addition, we present a number of

features inspired by social media services, which we

believe will be helpful for developing software applications.

To the best of our knowledge, the similar set of

functionalities is not offered by any of the previously

existing web-based code editors.

We have selected Java and Vaadin [6] as the target

language and framework, meaning that CoRED is an editor

initially aimed for those two. Nevertheless, it can be

extended for other environments with reasonable amount of

work. The web applications based on Vaadin are

implemented just like desktop Java applications. Because of

the strong typing and good tool support in Java it is possible

to augment CoRED with many features. These features

include semantic error checking and code completion. This

could just be dreamed of for weakly typed dynamic

languages like JavaScript.

The rest of this paper is structured as follows. In the next

section, we give an overview to the Vaadin framework, to

the Ace editor, and to Java Developer Kit (JDK) which we

are using as a base of our work. We also give a brief

introduction to Arvue IDE which is going to use our editor

as a building block. After this, we describe the technology

behind our solutions and discuss the collaborative features.

Moreover, we explain how CoRED could be extended for

different frameworks. Then, we compare our editor with

other code editors available in the web. Towards the end of

the paper, we draw some final conclusions.

BACKGROUND

In this section, we give brief introduction to tools we are

using in CoRED. We also show Arvue IDE as an example

because it is going to be the first actual web application

using CoRED. Tools we are using are the Vaadin

framework, Ace editor, and Java Developer Kit (JDK). As a

1
CoRED is available for testing at

http://jlautamaki.virtuallypreinstalled.com/CoRED

framework, Vaadin is obviously the lowest layer of our

architecture. Vaadin is used for communicating over

HTTP(S) and for making a separation of concerns between

the client and the server [18]. On the client side, we use Ace

editor as a front-end, and on the server side JDK as a tool

for analyzing the source code. Vaadin also offers us a way

for packaging the whole CoRED as a deliverable

component as presented in Figure 1. CoRED can be used as

a part of Vaadin based application like Arvue IDE or as it

is.

Arvue

Arvue
2
 is a cloud based IDE and hosting solution for the

users who need a simple web-based tool for implementing

and publishing Java based Vaadin applications. The basic

philosophy of Arvue is to create applications “in the web

for the web”. In other words, the goal is to implement web

applications in the web and publish them with minimal

effort. No other tool except the browser is needed, implying

that no installation is necessary in any phase of the

development.

Applications are created in the browser-based visual editor

that contains both the GUI (see Figure 2) and the code

editor. On the GUI side, the user can create a new GUI just

by dragging and dropping elements and layouts. The

created GUI is then converted to source code and it can be

further modified with the code editor (namely CoRED).

Arvue is a round trip tool between the GUI and the text

2
Arvue@dev.vaadin.com wiki.

http://dev.vaadin.com/wiki/Arvue

Figure 1. Architecture of CoRED Vaadin component and

Arvue IDE using it.

editor, meaning that same GUI edits can be done from both

of the editors. The code editor is also used to implement

features behind the GUI. Finally, the new application can

effortlessly be deployed to a cloud type environment, which

scales up by starting more server instances when needed.

Every server is able to host multiple applications, which

share many resources while not interfering with each other.

Arvue utilizes the Vaadin framework in its implementation.

While editing is done inside a browser, most of the

processing is carried out on the server side, as is common in

Vaadin based system. For example, the server side of the

CoRED utilizes JDK for semantic error checking and it also

eases the implementation of code completion. Furthermore,

our code editor is implemented as a custom Vaadin

component whose client side is a Google Web Toolkit

(GWT) [12] widget. Additionally, the client side widget

uses JavaScript based Ace editor for basic editor

capabilities.

The Vaadin Framework

Vaadin is an open source framework for developing Rich

Internet Applications (RIA) using the Java programming

language. The Vaadin framework relies extensively on the

facilities of GWT [12]. GWT is an open source

development system that allows the developer to write

AJAX applications [10] in Java and then compile the source

code to JavaScript which can be run on all browsers. In the

Vaadin framework, GWT is used for compiling the client

side engine and for communication between the client and

the server.

From the developer perspective, individual Vaadin

applications are implemented similarly to Java Standard

Edition desktop applications. However, instead of usual UI

libraries like AWT, Swing or SWT, the developer has to

use the specific set of Vaadin UI components and the

framework knows how to use the browser as a view. In

addition, new custom made UI components can be

implemented. In this case the client side of the customized

UI component can be either developed in Java and then

Figure 2. Arvue IDE with the graphical UI editor tab opened.

compiled with GWT or written directly with JavaScript.

The use of any combination of Java and JavaScript is also

possible. Thus, this enables us to use readily made

JavaScript applications as a part of the Vaadin client side

component.

Java Developer Kit (JDK)

Usually, Java applications run on top of a Java Runtime

Environment (JRE) and are only compiled using a Java

bytecode compiler included in developer kits like the Sun

JDK
3
. However, this is not enough in order to develop the

code editor applications, which can create other new

applications on the fly. Instead, we need to run the

application on the developer kit. JDK contains the

necessary tools for compiling, executing, debugging and

documenting the programs. Furthermore, it includes

tools.jar package, which contains useful Sun specific

APIs for compiling, diagnosing, and parsing the source

code.

For our purposes, JDK provides a couple of very useful

features: JavaCompiler
4
 is an interface for invoking Java

compiler from the program. The compiler generates

complete error and warning diagnostics during compilation

(for example, error messages) and they can be collected

using DiagnosticCollector. In addition, by extending

ClassLoader and StandardFileManager, the source and

destination of compilation can be redirected. Finally, the

offered API contains TreePathScanner
5
 that can be used for

processing source code. The scanner visits all the child tree

nodes of the source code and can, thus, be used for finding

Classes, Methods, Variables and other kinds of Java

structures.

Ace

Ace
6
 is an open source code editor written using JavaScript.

It can be easily embedded in any web page and it has

support for several different programming languages,

including Java. Ace offers a lot of basic text editor features

such as undo/redo, search/replace, and customization of

appearance using themes. It also implements many features

important specifically for programmers like syntax

highlighting and automatic indentation.

It is easy to extend the behavior of Ace without editing its

source code. It is possible, for example, to implement your

3
JDK File Structure for Windows.

http://download.oracle.com/javase/6/docs/technotes/tools/

windows/jdkfiles.html
4
Java Compiler (Java Platform SE6).

http://download.oracle.com/javase/6/docs/api/javax/tools/Ja

vaCompiler.html

5
TreePathScanner (Compiler Tree API).

http://download.oracle.com/javase/6/docs/jdk/api/javac/tree

/com/sun/source/util/TreePathScanner.html
6
Ace – Ajax.org Cloud9 Editor. http://ace.ajax.org/

own keyboard handler. Another feature important to us is

that Ace supports markers for showing code errors. Also

custom markers like underlining are possible. Moreover,

Ace offers information useful in integrating the editor into a

broader framework. For example, the position of the cursor

in screen coordinates is needed for displaying a suggestion

box at a suitable position.

ARCHITECTURE OF CORED

In CoRED, most of the hard work such as checking code

errors and generating code suggestions is done on the server

side. The client side editor does the interaction with the

user. CoRED utilizes the Vaadin framework to tie these two

sides together.

Separation of concerns

Both the client side and the server side of CoRED are

designed to be easily customizable. Most of the features of

the editor, such as error checking or code suggestions are

implemented as replaceable and extendable components. A

part of the CoRED architecture is presented in Figure 3.

The main component, CollaborativeCodeEditor, and its

client side counterpart act as glue between the server side

components and the front-end editor. For example, when

the user needs code suggestions, the main CoRED

component requests suggestions from the server and then

displays a widget for the user for selecting among the

suggestions. The suggestions are generated by server side

suggester components, and the selected suggestion is finally

sent to the front-end editor.

The front-end editor component is typically a wrapper for a

third-party JavaScript code editor. We have implemented a

prototype component with three possible choices for the

front-end editor: Ace, CodeMirror
7
 and Eclipse Orion

8
.

Wrapping a JavaScript editor inside a Vaadin GWT

component was quite straightforward using JavaScript

Native Interface (JSNI)
9
 calls. Eventually, we chose Ace as

our front-end editor because of its good support for

indentation, syntax highlighting and customizable markers

among other things.

CoRED has a possibility for flexible component add-ons.

For example error checking and code completion

components can be added by simply implementing the

corresponding interfaces. Next we present the implemented

components in detail.

Error Checking

Error checker is an example of component for extending

CoRED. For checking errors, there are basically two

possible approaches. First, we may use our own or third

7
CodeMirror. http://codemirror.net/

8
Orion – Eclipsepedia. http://wiki.eclipse.org/Orion

9
Coding Basics - JavaScript Native Interface (JSNI).

http://code.google.com/webtoolkit/doc/latest/

DevGuideCodingBasicsJSNI.html

party library for parsing and error searching. Second, it is

possible to compile the code from source to bytecode and

then get compiling diagnostics.

For our implementation, we decided to use the latter

solution with Java SE Development Kit (JDK). This way

we get all-inclusive error and warning diagnostics from

JavaCompiler and we do not need to stumble with the

parser-compiler incompatibility. However, a basic problem

with compiling is its consumption of computing resources.

If we use a third party library or some kind of separate

incremental parser like in Eclipse SDK for error checking,

we could have better changes to tune the balance between

efficiency and accuracy. However, we think that the

approach is sufficient for our prototype.

In error checking, our basic procedure is to first compile the

code and then ask for compiling diagnostics. Error

diagnostics offered by JDK contain all the information

needed for the message to user: in addition to the actual

error message, line and column numbers are available. For

efficiency reasons we do not save the files but only compile

in memory. Furthermore, we compile only when we assume

that the user wants the errors to be checked. In practice we

wait for a while after the last edit and compile when user is

in an idle state planning the next modifications. No

compilation is done during code editing and even during the

compilation the user interface is not blocked.

With just a few users, the compiling happens in the blink of

an eye and most of the delay is caused by network

communication. However, with multiple users, the

continuous compiling is an efficiency problem. To make

the system more scalable we compile less frequently when

the number of users increases. In practice this is

implemented with a separate worker thread for

compilations.

Suggestions and Code Completions

While editing the source code, the code editor also suggests

possible code completions. The suggestions can be invoked

in two ways, by using a special key combination or by

typing a dot after, e.g., an interface or an object name.

In either case, the server side client analyzes the code with

all the implemented suggestion components. In fact, we

have implemented two different suggestion components:

one for standard Java suggestions and another for Vaadin

specific ones. Based on the cursor location in the text the

components resolve suitable suggestions. In addition to the

actual inserted text, each suggestion includes a visible name

of the suggestion and a longer description. These are passed

to the editor and then shown to the user as seen in Figure 4.

To help resolving the suggestions, we use tools offered by

JDK. With TreePathScanner it is possible to build a tree of

classes, methods, variables or other parts of Java syntax.

The currently visible variables, their types and methods,

and the visibility scopes can be tracked down. To calculate

the suggestions, the whole document is scanned with linear

time operation. A suggestion may be related to a class

originating from an imported package. For resolving those

Figure 3. A part of the CoRED class hierarchy.

suggestions, we load the class and use reflection
10

 to ask for

its public methods and variables.

Collaborative features

It is natural to consider web applications as multiuser

applications. The main requirement for a multiuser

application is the shared data [11]. When all the users are

connected to the same system it seems only reasonable to

assume that in addition to interacting with the system, they

are communicating with each other. In our case

collaboration means simultaneous editing of code document

and some features inspired by social media.

Collaborative editing

For collaborative editing, we decided to use Neil Frasers

Differential Synchronization with shadows [5]. It is a robust

and convergent collaborative editing algorithm with open

10
Reflection (Java SE Documentation)

http://download.oracle.com/javase/6/docs/technotes/guides/

reflection

source implementations available on various languages,

including Java and JavaScript.

The basic idea of Differential Synchronization is the

following: the server stores the shared document, and each

Figure 5. Neil Fraser’s Differential synchronization with

shadows [11]

Figure 4. CoRED with generated listener, error tooltip and suggestion box opened (last two cannot normally be opened

simultaneously)

client has a separate shadow copy of the document both on

server and client side, along with the copy they are editing

(Figure 5). When a client changes its document, the

differences between the newly edited document and the

latest shadow are calculated using Myer’s algorithm [8]. A

patch (made using Bitap matching algorithm [18])

containing the differences is sent to the server. The patch is

used both for keeping the server side shadow in sync, and

for applying the changes to the shared document. The

algorithm is symmetrical in a sense that the changes made

to the shared document by other clients, is communicated to

the client in the same way as the changes from the client to

the server.

Differential synchronization is relatively easy to implement

and it meets three basic demands often set for collaborative

editing [16]: Firstly, it has high responsiveness. The edits

can be done locally and only the differences are delivered to

the server. Therefore the local actions are as quick as in a

single-user editor. Secondly, it has high concurrency rate

and multiple users can simultaneously edit any part of the

document. Finally, it is able to hide communication

latencies to some extent. Naturally, when latencies grow the

conflict rate rises.

In addition to differential synchronization, there are plenty

of ways to implement collaborative editing. One approach

would be to lock the document or a subsection of the

document before editing. A drawback with the locking

approach is that a user must wait for the lock to be

confirmed by a server, resulting to a loss in usability [15].

Another commonly used technique in collaborative editing

is Operational Transform (OT) [3, 4, 7], used in e.g.

Ethercodes
11

 and Google Docs
12

. In OT, each operation

11
 EtherCodes: Online Collaborative Code Editing.

http://gigaom.com/collaboration/ethercodes-online-

collaborative-code-editing/

12
 Google Docs. http://docs.google.com/

(insert, delete, etc.) is recorded and sent to other clients who

then transform the operation to take into account all the

concurrently executed operations. In practical use, the OT

implementations must deal with quite a large number of

different editor actions including cut, paste, auto-

corrections, auto-indentation, and suggestions, which may

make the implementation problematic [5].

Features inspired by social media

In addition to plain collaboration in the form of writing

code collaboratively, there are also some features inspired

by social media. Perhaps the most obvious feature is the

option to write comments in a fashion normally associated

with text rather than code, as demonstrated in Figure 6.

When some text is selected (“HelloWorld” in the figure), a

popup is shown that allows the user to add a note referring

to that text. When a user places the cursor on top of an

existing note, the note popup is shown. Other users can

reply to the original note, thus extending the note to a

discussion, as also shown in Figure 6.

The notes reside in their original logical positions even

though the document is modified. The start and the end

positions of a note are marked with a marker. When a user

inserts (or deletes) text before a marker, it is moved forward

(or backward). The positions of markers are kept in

synchronization similarly to the differential synchronization

algorithm by sending, along with the text differences, also

the position changes of markers from the client to the server

and back.

In CoRED, it is also possible to lock portions of the

document to be edited only by one editor. For example, if a

user wanted to make changes to a specific function without

anybody interfering, he/she could lock a function by

selecting the function and clicking a "Lock for me" button

in a popup that showed up after selecting. After locking, the

locked area is shown as grey for other users and they are

unable to edit it although they can still add notes to it. Like

notes, locks also have a start marker and an end marker

which retain their logical positions.

Figure 6 . A note related to “HelloWorld” and a reply in CoRED. The method called

“method1” is locked by another editor.

The locking requests are sent to the server, and if no one

else had an overlapping lock, the lock is granted. Users are

disallowed to do any operations that would modify (or

delete) a portion locked by another user. Such actions are

already blocked on the client side, but the validity of edits is

also checked on the server side. The additional server side

check is needed because a lock may have been granted to

editor A while editor B was editing the same part of the

document. Thus, when B sends its modifications to the

server, they are discarded.

Performance considerations

The most time-consuming operation on the server side

CoRED is the compiling of the edited Java source code.

The result of the compilation is needed to present the user

with error messages and code suggestions.

In our brief experiments, when running the server on a

laptop containing Core 2 Duo processor, the compilation of

a typical Java file with a couple of hundreds of lines, took

tens of milliseconds. For sufficient user experience, the

compilation needs to be done at most once a second, which

could be managed on quite modest hardware.

Another heavy operation is applying patches to the

collaborative document. The resource consumption of

patching depends on the density of edits done on the

document. It should be noted that there is a practical

usability limit on how many people can edit the same

document simultaneously, which is most likely a more

constraining factor than the performance of patching. In our

brief tests where a few people edited the same document

simultaneously, there were no performance issues.

Editing multiple documents can be done on separate

instances of CoRED, which could easily be distributed on

multiple server machines if needed. Consequently we do

not presently consider this as a major performance

bottleneck.

CUSTOMIZING THE EDITOR

CoRED can be customized and extended in several ways.

As mentioned, it is possible to use new error checkers and

suggesters instead of, or in addition to, the existing

components. For example, it is possible to use CoRED for

another language than Java by implementing custom

suggesters and error checkers, and changing the syntax

highlighting and indentation of the front-end editor.

Suggestions

In case of Java based frameworks, it is possible to use our

Java suggester. The required jar files of the target

framework just have to be added to classpath. If the need

for special suggestions related to a specific framework

arises, it is possible to create custom suggesters by

implementing the Suggester interface in Figure 3.

For example, when developing for Vaadin framework, there

is often a need to add an anonymous listener for an UI

component, such as ClickListener for a button. We have

developed a Vaadin specific suggester, which is to be used

in addition to the standard Java suggester. It generates

empty skeletons for anonymous listeners where applicable.

For example, let us assume that there is a Vaadin Button

called myButton defined in the scope of the cursor. When

the user types “myButton.”, one of the suggestions is to add

an anonymous ClickListener. An illustration of the above

case can be seen in Figure 4. The anonymous skeletons are

created using Java reflection. Similar suggesters can be

easily developed for other Java frameworks.

The suggestion feature is not limited to Java language,

although we have not implemented any non-Java

suggesters. It is possible to develop arbitrary suggesters for

any language. However, creating a useful suggester for a

dynamically typed language such as JavaScript is more

difficult.

Error checking

As our error checker relies on the Java compiler, it can be

used with any Java-based framework as long as the correct

libraries are in the classpath. The standard Java error

checking is most likely sufficient for most Java projects.

Although it is possible to create custom error checkers by

implementing the ErrorChecker interface (Figure 3).

Once again, things get more difficult with non-Java

frameworks. Error checkers can be created for any language

but CoRED offers no support for non-Java ones. The Ace

editor we use as a front-end, contains a JavaScript error

checker that is not a part of the CoRED architecture.

Front-end editor

Ace, the front-end editor used in CoRED, is highly

customizable. It offers the possibility to change its

appearance and define custom highlighting rules in separate

configuration files. Ace already contains the files for the

most popular languages such as JavaScript, HTML, XML,

PHP, C++. Thus, adapting the front-end to be used for

developing for other languages than Java is very simple.

If Ace, for some reason, does not meet our requirements, it

is even possible to use another front-end, leaving the rest of

CoRED intact. The front-end component must implement

the FrontEnd interface (Figure 3). The interface defines the

methods needed for the editor, including setting and getting

the editor text, changing the cursor position, setting

callbacks for changes, displaying error markers, and so on.

RELATED WORK AND COMPARISON

CoRED is not the first in the field of collaborative browser-

based code editors. The first collaborative editor was

presented as early as 1968 in the demo, retrospectively

named as “The Mother of All Demos”
13

. Naturally, the

demo in 1968 did not work on the browser. One of the first

collaborative editors runnable in a browser (using Java

Applets) was REDUCE [17]. The Web 2.0 phenomenon

introduced the browser-based collaborative editors to a

13
 Wikipedia – The Mother of All Demos.

http://en.wikipedia.org/wiki/The_Mother_of_All_Demos

larger audience. One of the most successful was Writely

that later evolved to Google Docs. The step from a text

editor to simple code editor is quite short, and currently lots

of browser based collaborative code editors are available.

Most of the browser based code editors have some of the

same features as CoRED, but none has exactly the same

ones. Many of the competing editors like CodeMirror and

Ace are aimed for only code editing, not for creating

applications. Like in the desktop world, also in the web

there are wide variety of different languages and

frameworks. Thus, it is virtually impossible to create one

IDE that would support the whole project from writing the

code from scratch to publishing it for all of the frameworks.

As CoRED is a part of Arvue IDE, our goal is exactly the

whole process from beginning to deploying to the web.

Akshell
14

 has the similar kind of framework approach. It

allows a developer to implement both the client and the

server with JavaScript. The system also takes care of

deploying. In addition, Orion project by Eclipse community

limits the frameworks that the user can use. Orion is still in

a proposal phase but it looks promising.

When comparing the features of other editors, most code

editors have code coloring and indenting available for

several different programming languages. To the best of our

knowledge, there is only one other example of the browser

based editor with code completion and error checking. The

editor, named WWWorkspace
15

, uses Eclipse as a back-

end. As our editor has probably some scalability issues

because of JDK, one can only imagine the situation with a

massive editor like Eclipse. Like CoRED, WWWorkspace

is also using strongly typed Java language. Most of other

code editor examples are aimed for weakly typed dynamic

languages like JavaScript. JavaScript has its own good

sides, but it is virtually impossible to do semantic checking

for weakly typed interpretive language.

As a further comparison, CoRED can be easily extended to

support any Java based framework. As a downside, CoRED

is heavily dependent of the server side and it cannot be used

in offline mode like, for example, Google Docs.

FUTURE WORK

Since we are still working with the editor, it is obvious that

numerous directions to future work exist. To begin with,

introducing support for other phases of development work,

such as requirements or project management, would be

natural extensions. Then, also these tasks could be turned

collaborative as well as more closely linked with

development activities. Currently, we assume that these

features come from environments that use CoRED as a

component.

14
Akshell. http://www.akshell.com/

15
WWWorkspace.

http://www.willryan.co.uk/WWWorkspace/

Another obvious direction for future work is to perform the

series of usability studies in order to find out how

programmers wish to use the facilities of the system. This

could take place in the form of a coding camp, where

students would take part in the experiment, and provide

feedback on the system. Based on the results, we can then

further refine the implementation and focus on parts that

provide most support for the actual development work. In

addition, the results of such studies could also help us to

identify more potentially useful features that are

commonplace in social media but not widely applied in

software development.

Finally, in order to gain experiences from a larger user base,

we are going to publish CoRED in the open Vaadin

Directory
16

 as a re-usable add-on for all the Vaadin

Community. CoRED can be used as a component of other

Vaadin projects or as a stand-alone application. It will also

be used as a part of the IDE called Arvue. Currently, Arvue

is in an early alpha stage. The other components are going

to be the graphical designer for generating user interfaces

and the capability to save applications to Git version

management. In addition the developed applications can be

published directly to the offered cloud. Arvue is mostly

designed for creating small Vaadin applications and for

testing purposes, but there is no obvious reason why it

could not be used more generally.

CONCLUSION

In this paper, we described the browser based editor

CoRED intended for collaborative real-time editing of the

Java based source codes. We extended the system to offer

some Vaadin framework specific features for developing

the web applications in the web. As editing features,

CoRED contains highlighting, indentation, semantic error

checking and code completion. As a combination, this set

of features is unique when compared with other browser

based code editors. CoRED is going to be published in the

Vaadin Directory as a re-usable add-on. It will also be used

as a part of the web based IDE called Arvue.

CoRED is built to be modular and many of its parts can be

replaced or extended. In this paper, we gave a small

summary of what kind of modifications are needed to

extend CoRED to different frameworks. In the case of Java

based frameworks, just small additions for the suggestion

component and error checker are needed. However, for

non-Java frameworks more laborious modifications are

needed and the benefit of using CoRED is smaller.

Fortunately, communication from client to server and

collaborative features should work without problems in

frameworks of all kind.

As a further contribution, we discussed on how the web

applications should be developed and made a small

comparison between our editor and other web based code

16
Directory – vaadin.com. http://vaadin.com/directory

editors available. As a piece of future work it would be

interesting to do more experimentation on the usability as

well as the scalability of our system.

REFERENCES

1. Begel, A., DeLine, R., and Zimmermann, T. Social

media for software engineering. In Proceedings of the

Workshop on Future of Software Engineering

Research, pp. 33–38. Santa Fe, NM, USA, 2010.

2. Curtis, B., Krasner, H., and Iscoe, N. A Field Study of

the Software Design Process for Large Systems.

Communications of the ACM 31(11), pp. 1268–1287.

1988.

3. Davis, A. H., Sun, C., and Lu, J. Generalizing

operational transformation to the standard general

markup language. In Proceedings of the 2002 ACM

conference on Computer supported cooperative work,

pp. 58–67. New York, NY, USA, 2002.

4. Ellis, C. A., and Gibbs, S. J. Concurrency control in

groupware systems. In Proceedings of the 1989 ACM

SIGMOD International Conference on Management of

Data, pp. 399–407. Portland, OR, USA, 1989.

5. Fraser, N. Differential Synchronization. In Proceedings

of the 2009 ACM Symposium on Document

Engineering, pp. 13–20. New York, NY, USA, 2009.

6. Grönroos, M. Book of Vaadin. Uniprint. 2011.

7. Ignat, C-L., and Norrie M. C. Customizable

collaborative editor relying on treeOPT algorithm. In

Proceedings of the eighth conference on European

Conference on Computer Supported Cooperative Work,

pp. 315–334. Norwell, MA, USA, 2003.

8. Myers, E. W. An O(ND) difference algorithm and its

variations. Algorithmica 1(1), pp. 251–266. 1986.

9. O'Reilly, T. What is Web 2.0: Design Patterns and

Business Models for the Next Generation of Software.

O’Reilly. 2005.

10. Paulson, L. D. Building rich web applications with

Ajax. Computer 38(10), pp. 14–17. 2005.

11. Patterson, J. F., Hill, R. D., Rohall, S. L., and Meeks S.

W. Rendezvous: an architecture for synchronous multi-

user applications. In Proceedings of the 1990 ACM

conference on Computer-supported cooperative work,

pp. 317–328. New York, NY, USA, 1990.

12. Perry, Bruce W. Google Web Toolkit for Ajax.

O'Reilly Short Cuts. O'Reilly, 2007.

13. Sahay, S. Global Software Alliances: The Challenge of

'Standardization'. Scandinavian Journal of Information

Systems 15, pp. 3–21. 2003.

14. Storey, M-A., Treude, C., van Deursen, A, and Cheng,

L-T. The impact of social media on software

engineering practices and tools. In Proceedings of the

Workshop on Future of Software Engineering

Research, pp. 359–364. Santa Fe, NM, USA, 2010.

15. Sun. C. Optional and Responsive Fine-Grain Locking

in Internet-Based Collaborative Systems. IEEE

Transactions on Parallel and Distributed Systems

13(9), pp. 994–1008. 2002.

16. Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D.

Achieving Convergence, Causality-Preservation, and

Intention-Preservation in Real-Time Cooperative

Editing Systems. ACM Transactions on Computer-

Human Interaction 5(1), pp. 63–108. 1998.

17. Sun, C., Jia, X., Zhang, Y., Yang, Y., and Zhang, Y.

REDUCE: a prototypical cooperative editing system.

In Proceedings of the Seventh International

Conference on Human-Computer Interaction, pp. 89–

92. 1997.

18. Sun, W. Manbed, U. Fast text searching with errors.

Communications of the ACM, 35(10), pp. 83–91.

1992.

http://dblp.uni-trier.de/db/indices/a-tree/b/Begel:Andrew.html
http://dblp.uni-trier.de/db/indices/a-tree/d/DeLine:Robert.html
http://dblp.uni-trier.de/db/indices/a-tree/z/Zimmermann:Thomas.html
http://dblp.uni-trier.de/db/indices/a-tree/s/Storey:Margaret=Anne_D=.html
http://dblp.uni-trier.de/db/indices/a-tree/t/Treude:Christoph.html
http://dblp.uni-trier.de/db/indices/a-tree/d/Deursen:Arie_van.html
http://dblp.uni-trier.de/db/indices/a-tree/c/Cheng:Li=Te.html

