
Rule Ensembles for Multi-Target Regression

Timo Aho
Department of Software Systems

Tampere University of Technology
Korkeakoulunkatu 1, FI-33101 Tampere, Finland

Email: timo.aho@tut.fi

Bernard Ženko and Sašo Džeroski
Department of Knowledge Technologies

Jožef Stefan Institute
Jamova cesta 39, SI-1000 Ljubljana, Slovenia
Emails: {bernard.zenko, saso.dzeroski}@ijs.si

Abstract—Methods for learning decision rules are being
successfully applied to many problem domains, especially
where understanding and interpretation of the learned model
is necessary. In many real life problems, we would like to
predict multiple related (nominal or numeric) target attributes
simultaneously. Methods for learning rules that predict multi-
ple targets at once already exist, but are unfortunately based
on the covering algorithm, which is not very well suited for
regression problems. A better solution for regression problems
may be a rule ensemble approach that transcribes an ensemble
of decision trees into a large collection of rules. An optimization
procedure is then used for selecting the best (and much smaller)
subset of these rules, and to determine their weights.

Using the rule ensembles approach we have developed a new
system for learning rule ensembles for multi-target regression
problems. The newly developed method was extensively eval-
uated and the results show that the accuracy of multi-target
regression rule ensembles is better than the accuracy of multi-
target regression trees, but somewhat worse than the accuracy
of multi-target random forests. The rules are significantly more
concise than random forests, and it is also possible to create
very small rule sets that are still comparable in accuracy to
single regression trees.

Keywords-Multi-Target Prediction, Rule Learning, Regres-
sion

I. INTRODUCTION

The most commonly addressed problem in machine learn-
ing is that of how to predict the value of a single target
attribute or class. There exist, however, many real life
problems where we would like to predict multiple target
attributes at once, instead of only a single one. A typical
example from the environmental sciences would be the
task of predicting species communities [1]. Here we are
interested in the abundances of a set of different species
living in the same environment. These species represent
the target attributes, which might, but need not be related.
If our only goal is to achieve high predictive accuracy,
a collection of single-target models should be sufficient
to solve the problem. However, if we are also interested
in interpretability, the collection of single-target models is
much more complex and harder to interpret than a single
model that jointly predicts all target attributes [2]–[4]. An
additional benefit of the multi-target models is that they
are less likely to overfit the data and are frequently more

accurate than the corresponding collections of single-target
models [2], [3], [5], [6].

Besides decision trees, rule sets are one of the most
expressive and human readable model representations, and
are frequently used when an interpretable model is desired.
The majority of rule learning methods, including existing
methods for learning multi-target rules, are based on the
sequential covering algorithm [7], originally designed for
learning ordered rule lists for binary classification domains.
Unfortunately, on both single- and multi-target regression
problems the accuracy of rule sets that are learned with this
approach is considerably worse than that of other regression
methods, i.e., regression trees (cf. [8] for an empirical
comparison). An alternative rule learning method that per-
forms well also on (single-target) regression problems is the
approach of rule ensembles as implemented in the RuleFit
method [9]. The method starts with creating an ensemble of
decision trees, which are considered as an initial collection
of rules. An optimization procedure is then used with the
purpose of finding an optimal weight for each of these rules.
During the optimization, one tries to assign as many weights
as possible to zero in order to learn small and interpretable
models, while not compromising their accuracy. In this paper
we adopt this approach for learning multi-target regression
rule ensembles, and propose an algorithm that can learn
unordered rule sets that are both accurate and interpretable.

The paper is organized as follows. In Section 2, we
briefly present the related work on multi-target prediction,
rule learning, and rule ensembles. The newly proposed
algorithm for learning multi-target regression rule ensem-
bles is presented in Section 3. In Section 4, we describe
the experimental evaluation setting, and in Section 5 the
experimental results. The last section concludes and gives
some directions for further research.

II. RELATED WORK

The algorithm presented in this paper is related to several
existing approaches for multi-target prediction. The multi-
target prediction task is defined as follows. We are given
a set of learning examples E of the form (x,y), where
x = (x1, x2, . . . , xK) is a vector of K descriptive attributes
and y = (y1, y2, . . . , yT) is a vector of T target attributes.

Our task is to learn a model that, given a new unlabeled
example x, can predict the values of all target attributes
y simultaneously. Several standard learning methods such
as neural networks, decision trees, classification rules and
random forests have already been extended towards multi-
target prediction [3]–[6], [10].

Since our method learns regression rules, it is highly
related to rule learning [11]. A method for learning multi-
target rules already exists [4], [8]. It employs the standard
covering approach and can learn ordered or unordered rule
sets for classification or regression domains. Its accuracy on
classification domains is comparable to other classification
methods like (multi-target) decision trees. However, on re-
gression domains the accuracy is significantly worse.

An alternative approach to rule learning are so-called rule
ensembles [9], [12].1 In this paper we adopt rule ensembles
as implemented in the RuleFit method. This method starts
by generating a set of decision trees in much the same way
as ensembles are generated by methods like bagging [13]
or random forests [14]. Because such large ensembles are
hard or impossible to interpret, all the trees are transcribed
into a collection of rules, and an optimization procedure
is used to select a small subset of rules and to determine
their weights. As a result, we get a relatively small set of
weighted rules. The final prediction for a given example is
obtained by taking a weighted vote of all the rules that apply
(i.e., cover the example). The resulting model can thus be
written as: ŷ = f(x) = w0 +

∑M
i=1 wiri(x),where w0 is

the baseline prediction, and the sum is the correction value
obtained from M rules. The rules ri are functions, which
have a value of 1 for all examples that they cover, and 0
otherwise. During the learning phase, all the weights wi are
optimized by a gradient directed optimization algorithm.

The method presented in this paper is a generalization
of RuleFit towards multi-target regression problems, and we
describe it in detail in the next section.

III. LEARNING RULE ENSEMBLES

Our algorithm for learning rule ensembles for multi-target
regression problems (which we call FIRE – Fitted rule
ensembles) is based on the RuleFit method [9]; its outline is
presented in Fig. 1. We start by generating a set of diverse
regression trees, which we convert to rules. We then optimize
the weights of rules with a gradient directed optimization
algorithm. This optimization procedure depends on the gra-
dient threshold parameter τ , and we repeat the optimization
for different values of τ in order to find a set of weights
with the smallest error. In the end we remove all the rules
whose weights are zero.

The resulting rule ensemble is a vector function f ; given
an unlabeled example x it predicts the values of all target

1Strictly speaking, any set of (unordered) rules can be called a rule
ensemble, however, in this paper, rule ensemble is understood as a set
of unordered rules whose predictions are combined via weighted voting.

Input: learning examples E
Output: rules R with their weights W

1: T ← GenerateSetOfTrees(E)
2: R← ConvertTreesToRules(T)
3: ERRmin ←∞
4: for τ = 0.0 to 1.0 with step do
5: (Wτ ,ERRτ)← OptimizeWeights(R,E, τ)
6: if ERRτ < ERRmin then
7: (Wopt,ERRmin)← (Wτ ,ERRτ)
8: end if
9: end for

10: (R,W)← RemoveZeroWeightedRules(R,Wopt)
11: return (R,W)

Figure 1. FIRE — Algorithm for learning rule ensembles for multi-target
regression.

attributes:

ŷ = f(x) = w0 avg +
M∑
i=1

wiri(x). (1)

The first part (avg) is a constant vector with the averages
over each of the targets. The sum is the contribution of
M rules: each rule ri is a vector function that gives a
constant prediction, if it covers the example x, or returns
zero otherwise. All the weights w are being determined
during the optimization phase and our goal is to have as
many weights equal to zero as possible.

Example. Let the problem domain have eight descriptive
attributes x = (x1, . . . , x8) and three target attributes
y = (y1, y2, y3). A hypothetic rule ensemble, comprising
a constant vector and two rules, that predicts all the target
values of this domain simultaneously could be:

ŷ = f(x) = 0.95 (16.2, 6.0, 21.1)
+ 0.3 [IF (x8 > 3)&(x6 > 7.2) THEN (2, 6, 3.7)]
+ 0.2 [IF (x3 ≤ 12.1) THEN (6.3, 50,−14.3)]

= (15.4, 5.7, 20.0)
+ [IF (x8 > 3)&(x6 > 7.2) THEN (0.6, 1.8, 1.1)]
+ [IF (x3 ≤ 12.1) THEN (1.3, 10,−2.9)]

So far, we have only briefly mentioned two important
aspects of our algorithm, i.e., the generation of the initial
collection of trees and rules and the weight optimization
procedure. We will now describe them in more detail. The
basic decision tree learning method that is used within the
GenerateSetOfTrees procedure of algorithm FIRE (Fig. 1)
is the predictive clustering tree learning method [10] that
can learn multi-target regression trees. A set of diverse trees
is generated with the multi-target implementation of the
random forest ensemble method [6], but in order to increase
the tree variance, the maximum tree depth is limited to a
random value chosen according to a probability distribution

proposed by [9], and used in the original RuleFit method.
The average depth of trees is specified as a parameter to the
algorithm. It should be emphasized here that this parameter
only limits the average depth of generated trees, trees with
larger depth can still be generated.

All regression trees generated are transcribed into rules
within the ConvertTreesToRules procedure. Each leaf of
each tree is converted to a rule and its predictions rt are
normalized in the following way. The predicted value r′t of
each target attribute t is changed to rt = r′t/r

′
m, where

r′m is the maximum absolute value of any predicted target
attribute value by this rule: m = arg maxi |r′i|. Thus for
the normalized rules it holds that |rt| ≤ 1 and rm = 1.
Such a normalization roughly equalizes the rules before the
optimization phase.

The last part of the algorithm that deserves a detailed
description is the optimization within the OptimizeWeights
procedure of algorithm FIRE (Fig. 1) that determines optimal
weights of the rules. For this purpose, the RuleFit method
uses a gradient directed optimization method [15] and a
squared loss function Lt:

Lt (ft(x), yt) = (ft(x)− yt)2 /2, (2)

which is applicable to a single target attribute only; here
ft(x) is the predicted value and yt is the true value. If we
want to use the above optimization algorithm for multi-target
problems, we have to define a loss function that is convex.
A simple solution is to take the above squared loss function
for each of the T target attributes and aggregate them by
taking their average:

L (f(x),y) =
1
T

T∑
t=1

Lt (ft(x), yt) . (3)

Such an aggregated loss function is convex and enables
efficient computation of gradients.

To equalize the contributions of different targets to the
aggregated loss function, we normalize the target values
by shifting their mean to zero and dividing them by 2σt,
where σt is the standard deviation of a given target attribute.
Assuming a normal distribution, this should put 95% of all
values within the [−1, 1] interval.

In this kind of optimization, we usually add to the loss
function a regularization part of the form

∑M
i=1 |wi|α to

keep the weights smaller or zero and add stability to the
optimization procedure. Popular values for α include α = 2
(L2 or ridge) and α = 1 (L1 or lasso). For gradient
directed optimization, a very similar effect to this kind of
regularization can also be achieved in a different and more
efficient way [15]. Instead of adding the regularization term
to the loss function, we can explicitly control the number of
weights that are changed during every optimization iteration
in the following way. Let M be the number of weights
that we are optimizing with a gradient method. Instead of

Input: rules R, learning examples E and gradient treshold
parameter τ

Output: weights W and an error estimate ERR

1: W0 = {0, 0, . . . , 0}
2: (Et, Ev)← SplitSet(E) {Training and validation}
3: for i = 0 to Maximum number of iterations do
4: do every 100 iterations
5: if Error(Ev, R,Wi) increased
6: Wi ←WeightsWithSmallestError(Ev, R)
7: ReduceStepSize()
8: end if
9: end do

10: G← ComputeGradients(Et, R,Wi)
11: if Limit of allowed nonzero weights is reached then
12: G← {gk ∈ G|wk ∈Wi : wk 6= 0}
13: end if
14: Gmax ← {gj ∈ G| |gj | ≥ τ maxk |gk|}
15: Wi+1 ← ChangeWeightsWithStep(Gmax,Wi)
16: end for
17: W ←WeightsWithSmallestError(Ev, R)
18: ERR ← Error(Ev, R,W)
19: return (W,ERR)

Figure 2. OptimizeWeights — Algorithm for gradient directed optimiza-
tion.

allowing changes to all the weights simultaneously, we only
allow changes to the weights wj whose gradients gj have a
value above a threshold

|gj | ≥ τ · max
0≤k≤M

|gk|. (4)

With τ = 0, we are changing all the weights during every
iteration, resulting in a behavior similar to ridge regulariza-
tion. On the other side, if τ = 1, only one gradient during
every iteration is modified and the behavior is similar to
lasso regularization. In our case, lasso regularization seems
better, because it has been shown to lead to many weights
being set to zero [16], which means simpler and more
interpretable models with fewer rules. However, in practice
it is hard to predict which τ value will result in the most
accurate model. We overcome this problem by trying a set
of different τ values (Fig. 1, line 5) and estimating their
accuracy on a separate validation set (the validation set is
the same for all τ). In the end, the model with the smallest
validation error is selected.

The complete optimization algorithm is presented in
Fig. 2. We start with all the weights set to zero, and splitting
the example set E into a training set Et and a validation
set Ev . The main idea is to repeat computing gradients
gk for each of the weights (line 8) and then changing the
selected weights wj into the most promising direction for a
predefined step size (lines 12–13).

In addition to this base idea, there are some important

details. First, on every 100-th iteration we check if we
are overfitting (line 4), i.e., if the validation error starts
to increase. In case the validation error increased, we do
not stop the optimization (as the algorithm by [15] does),
but return to the iteration with the lowest validation error
and continue with a smaller gradient step size, e.g., the step
size can be multiplied by 0.1 (lines 5–6). Second, we can
define a number of nonzero weights in advance (lines 9–11),
which makes a suitable parameter for setting the accuracy vs.
simplicity trade-off. An extensive experimental evaluation of
the algorithm’s performance is presented in the next section.

IV. EXPERIMENTAL SETUP

In the experimental evaluation we investigate three issues.
First, we compare the accuracy and model size of FIRE to
regression trees [10] and random forests [14] on single-target
regression data sets in order to show that our implementation
is also applicable to standard regression problems. Second,
we compare FIRE to the same methods on multi-target
regression data sets; this is the key part of the evaluation. As
described in Section III, our algorithm has a parameter that
can be used for limiting the total number of nonzero weights,
i.e., the number of rules. All the above experiments were
done with two values of this parameter: with an arbitrary
limit of 20 rules, and without any limitation on the size. If
we limit the maximum size of the models we of course get
less accurate models. An investigation of this issue is the
focus of the third part of the experimental evaluation.

The regression trees [10] and random forests [6] used
in our experiments, as well as our FIRE algorithm, are
implementedin the CLUS predictive clustering framework
[17].2 All the parameters for regression trees and random
forests were set to their default values. Random forests used
100 trees. Where possible, the parameters of FIRE were set
to the values used in [9]. When generating the initial set of
trees (GenerateSetOfTrees procedure) we used 100 random
trees with an average depth of 3. The optimization procedure
(Fig. 1, line 5) was run with gradient threshold parameter
τ values ranging from 0 to 1 in 0.1 increments. In the
OptimizeWeights procedure (Fig. 2), the initial learning set
E was split into 2/3 for training (Et) and 1/3 for validation
(Ev). The maximum number of optimization iterations was
10,000. The threshold for detecting error increase (line 5)
was 1.1, the starting step size for changing the weights was
10, but it was automatically multiplied by the factor 0.1 (i.e.,
reduced) if overfitting occured (Fig. 2, line 6).

The data sets used in the experiments, together with their
properties and references, are presented in Table I. Fifteen
single-target regression data sets are taken from standard
ML data repositories. Publicly available multi-target data
sets, however, are scarce; in addition to one public one,

2Available at http://www.cs.kuleuven.be/˜dtai/clus un-
der GNU General Public License.

Table I
DATA SETS USED IN THE EXPERIMENTAL EVALUATION. SINGLE-TARGET

DATA SETS ARE TAKEN FROM STANDARD ML REPOSITORIES BY UCI,
DELVE AND LUÍS TORGO. A BULLET DENOTES THAT A RANDOM

SUBSAMPLE OF A DATA SET WAS USED.

DATA SET # EXS # DES # TAR SOURCE
ATTS ATTS

ABALONE • 2,000 8 1 UCI
AILERONS 1,533 40 1 TORGO
AUTO-MPG 398 7 1 UCI
CENSUS • 2,000 8 1 DELVE
CLOUD 108 8 1 UCI
CPU ACTIVITY • 2,000 12 1 DELVE
DELTA-AILERONS • 2,000 5 1 TORGO
META-DATA 528 21 1 UCI
PBC 418 18 1 UCI
QUAKE • 2,000 3 1 UCI
ROBOT ARM• 2,000 8 1 DELVE
SENSORY 576 11 1 UCI
SERVO 167 4 1 UCI
STRIKE 625 6 1 UCI
VETERAN 137 7 1 UCI

COLLEMBOLAN 393 48 3 [18]
EDM 154 16 2 [19]
FOREST KRAS • 2,000 160 11 [20]
FOREST SLIVNICA • 2,000 149 2 [21]
META LEARNING 42 56 10 [22]
MICROARTHROPODS 1,944 142 3 [1]
SIGMEA REAL 817 4 2 [23]
SIGMEA SIMUL. • 2,000 10 3 [24]
SOLAR FLARE 323 10 3 UCI
VEGETATION • 2,000 64 11 [25]
WATER QUALITY 1,060 16 14 [26]

we collected ten previously analyzed data sets for which
we provide references. Due to time limitations we have
restricted the number of examples in each data set; for
data sets with more than 2,000 examples, we used random
subsample of size 2,000 and ignored the rest.

The accuracy of the learned regression models is esti-
mated for each target attribute by the relative root mean
squared error (RRMSE). The size of regression trees and
random forests is measured as the number of tree leaves in
all the trees. The size of FIRE models is measured as the
number of rules. All the above measures are estimated with
10-fold cross-validation, where the folds for each data set
are the same for all the algorithms.

To test whether any of the observed differences between
the algorithms are significant, we followed the methodology
suggested by [27]: first we use the Friedman test to check
if there are any statistically significant differences between
the compared algorithms. If the answer is positive, we
additionally use the Nemenyi post-hoc test to figure out what
these differences are, and we present them on the average
ranks diagrams. These diagrams show all the compared
algorithms in the order of their average ranks; the best are
on the right and the worst are on the left side of the diagram.
The algorithms that differ by less than a critical distance for
a p-value = 0.05 are connected with a horizontal bar, and

1234

CD

Tree

FIRE Max 20 terms FIRE

Random forest

(a) RRMSE

1234

CD

Random forest

FIRE FIRE Max 20 terms

Tree

(b) model size

Figure 3. Average ranks diagrams on single-target data for RRMSE (a) and model size (b). Better algorithms are on the right-hand side, the ones that do
not differ significantly by the Nemenyi test (p-value =0.05) are connected with a horizontal bar. CD is the critical distance.

are not significantly different. We perform such significance
testing for RRMSE and for model size.

However, when testing the differences in RRMSE for
multi-target data we have two possibilities. We can either
treat each of the target attributes of all data sets as an
independent measurement, or we can compute the average
over all targets within each data set and consider such av-
erages as independent measurements. The argument against
the first option is that target attributes within one data set are
probably not independent and as a result our test will show
more significant differences than there actually are. The
argument against the second option is that when computing
averages across all target attributes within a data set, we
are actually summing apples and oranges, and the resulting
average is probably not a valid quantity. In the absence of a
better solution, we present tests of RRMSE differences for
both options. The results of the experimental evaluation are
presented in the next section.

V. RESULTS

As already mentioned in the previous section, we per-
formed three groups of experiments. We evaluated our
implementation first on single-target and then on multi-target
regression data sets. The latter is the most important part,
since it shows whether our generalization of rule ensembles
towards multi-target regression is successful. Finally, we
investigated the influence of rule ensemble size on accuracy.

A. Single-Target Regression

On single-target data sets we have compared regression
trees, random forests and two versions of FIRE: one without
any limitation on the model size, and one with the maximum
number of rules set to 20. The average RRMSEs over all 15
data sets are 0.74, 0.66, 0.67, and 0.71, respectively. The
corresponding average models sizes are 26.9, 36,475, 409,

and 19.5. We have omitted the detailed results due to space
limitations. The Friedman test shows that the RRMSEs are
statistically different with a p-value =2.4 · 10−6 and model
sizes with a p-value =7.6 · 10−9. The average ranks for all
four algorithms together with the results of the Nemenyi test
are given in Fig. 3, separately for RRMSE and model size.
The better algorithms are the ones with higher ranks (with
1 being the highest rank) and are placed on the right-hand
side of the diagram. Algorithms whose ranks differ by less
than a critical distance (CD) are not significantly different
with a p-value =0.05.

From the RRMSE diagram (Fig. 3a) we can see that
random forests are the most accurate method, followed by
the unlimited and the limited versions of FIRE and regression
trees. However, for the adjoining algorithms, the difference
is not statistically significant. By limiting the number of
FIRE rules we therefore still get reasonably accurate models.
The diagram for model size (Fig. 3b) shows that regression
trees and the size limited FIRE both generate significantly
smaller models than the unlimited FIRE and random forests.
While the unlimited version of FIRE generates smaller
models than random forests, the difference is below the
significance threshold. We argue that these results show that
our implementation of rule ensembles performs well also on
single-target regression problems.

B. Multi-Target Regression

The detailed results of the algorithm comparison on multi-
target regression data are presented in Table II. Random
forests generate the most accurate models on 8, the unlimited
version of FIRE on 4 and regression trees on 3 data sets
(on three data sets multiple methods perform equally well).
However, the differences in model sizes are very large.

The Friedman test shows that the RRMSE values of algo-
rithms are significantly different with a p-value<2.2·10−16,

1234

CD

Tree

FIRE Max 20 terms FIRE

Random forest

(a) RRMSE, per target evaluation

1234

CD

Tree

FIRE Max 20 terms FIRE

Random forest

(b) RRMSE, per data set target average evaluation

1234

CD

Random forest

FIRE FIRE Max 20 terms

Tree

(c) size

Figure 4. Average ranks diagrams on multi-target data for RRMSE evaluated on separate targets (a), on target averages within data sets (b) and model
size (c). Better algorithms are on the right-hand side, the ones that do not differ significantly by the Nemenyi test (p-value =0.05) are connected with a
horizontal bar. CD is the critical distance.

if we treat each target separately, and with a p-value =
4.1 ·10−3, if we compare target averages over each data set.
The model sizes are different with a p-value =1.6·10−6. The
average ranks and results of the Nemenyi test are given in
Fig. 4 for RRMSE evaluated on separate targets (a), RRMSE
evaluated on target averages within data sets (b), and model
size (c).

Looking at diagram (a), the ranking of algorithms is
similar as in the case of single-target data sets: random
forests and the unlimited FIRE are more accurate than the
limited FIRE and regression trees. However, due to the
smaller critical distance, all differences are now significant.
Evaluation over target averages within data sets (b) shows
a similar picture, but because the sample size is smaller
(11 data sets vs. 63 targets), the critical distance is larger
and differences are less significant: only random forests
are significantly better than regression trees and the limited
version of FIRE. The diagram for size (c) is very similar
as in the single-target case: the limited FIRE and regression
trees are significantly smaller than the unlimited FIRE and
especially than random forests. While the difference in
size between random forests and the unlimited FIRE is not
significant, the average size of a random forest is almost 65
times larger than the average size of a FIRE model (Table II).
However, the difference in average accuracy is small.

C. Model Size Limitation for FIRE

Experiments presented in the previous two subsections
included two versions of the FIRE algorithm, one with the
maximum model size set to 20, and one without any model
size restrictions. In this subsection, we present experiments
with different values of the maximum model size parameter,
which show how this model size limit influences the accu-
racy of models. We use values of 10, 20, 30, 40, 50, and∞.
Due to space limitations, we omit the detailed results and
only present the average ranks diagrams in Fig. 5. Diagram
(a) shows the results on single-target data. While all the
differences in RRMSE are not significant, it is clear that
increasing the model size improves the accuracy. Diagrams
(b) and (c) show RRMSE on multi-target data for per-target
evaluation and for per-data set target average evaluation,
respectively. Because of a larger sample, there are more
significant differences in (b) than in (c), however, what is
common to both diagrams is the trend that models with less
terms are also less accurate. The size limitation parameter
can therefore be used as an accuracy for simplicity (and
interpretability) trade-off setting.

Another interesting conclusion that we can draw from
these diagrams is that while a model size of 20 seems enough
to get models that are not significantly less accurate than
the unlimited models for single-target domains, this is not
the case for multi-target domains. Here, at least 50 rules
are needed for an accuracy that is not significantly worse

Table II
DETAILED RESULTS OF ALGORITHM COMPARISON ON multi-target DATA. FOR EACH DATA SET WE FIRST GIVE THE average RRMSE over all targets,

AND THEN THE RRMSE for each target separately, TOGETHER WITH STANDARD DEVIATION. IN EACH ROW, THE SMALLEST ERROR IS TYPESET IN
BOLD. WE ALSO GIVE MODEL SIZES (#) FOR EACH OF THE ALGORITHMS. THE TWO FINAL ROWS GIVE THE AVERAGE RRMSES OVER ALL TARGETS,

OVER DATA SET TARGET AVERAGES AND AVERAGE MODEL SIZE OVER ALL DATA SETS.

DATA SET TREE RANDOM FOREST FIRE FIRE 20 RULES
TARGET ATTRIBUTES RRMSE # RRMSE # RRMSE # RRMSE #

COLLEMBOLA 0.97 3 0.92 13,193 0.94 505 0.96 20
SPECIES-NB 0.98 ±0.14 0.94 ±0.14 0.96 ±0.15 0.98 ±0.16
ABUD-TOTAL 0.96 ±0.47 0.93 ±0.51 0.95 ±0.50 0.96 ±0.48
ABUD-F.QUAD 0.96 ±0.14 0.89 ±0.11 0.90 ±0.15 0.95 ±0.14

EDM 0.72 11 0.69 2,923 0.69 677 0.71 20
D-FLOW 0.68 ±0.40 0.66 ±0.30 0.66 ±0.35 0.72 ±0.34
D-GAP 0.75 ±0.09 0.71 ±0.07 0.71 ±0.14 0.69 ±0.07

FOREST KRAS 0.77 55 0.66 75,769 0.70 773 0.73 20
CC 0.64 ±0.03 0.56 ±0.02 0.60 ±0.02 0.65 ±0.02
FSH 0.66 ±0.05 0.56 ±0.04 0.59 ±0.03 0.64 ±0.04
DELVEG 0.64 ±0.04 0.56 ±0.03 0.60 ±0.03 0.65 ±0.03
VPV1-HMX 0.76 ±0.09 0.65 ±0.09 0.68 ±0.08 0.72 ±0.09
VPV1-H99 0.74 ±0.05 0.62 ±0.04 0.66 ±0.03 0.71 ±0.03
VPV1-H95 0.74 ±0.05 0.63 ±0.04 0.66 ±0.03 0.71 ±0.04
VPV1-H75 0.75 ±0.05 0.64 ±0.04 0.67 ±0.03 0.71 ±0.04
VPV1-H50 0.77 ±0.05 0.67 ±0.05 0.70 ±0.05 0.74 ±0.06
VPV1-H25 0.83 ±0.11 0.73 ±0.12 0.76 ±0.11 0.78 ±0.12
VPV1-H10 0.92 ±0.19 0.81 ±0.23 0.83 ±0.22 0.85 ±0.22
VPV1-H05 0.98 ±0.25 0.86 ±0.30 0.87 ±0.29 0.89 ±0.29

FOREST SLIVNICA 0.62 124 0.54 73,127 0.54 564 0.61 20
HEIGHT 0.64 ±0.05 0.55 ±0.09 0.57 ±0.08 0.64 ±0.08
COVER 0.61 ±0.03 0.52 ±0.05 0.51 ±0.05 0.58 ±0.05

META LEARNING 1.35 2 0.92 1,401 0.86 354 0.98 20
LTREE 1.47 ±0.72 0.93 ±0.47 0.85 ±0.41 0.98 ±0.45
C50-RULES 1.46 ±0.70 0.93 ±0.47 0.84 ±0.40 0.96 ±0.43
LINDISCR 1.12 ±0.52 0.86 ±0.39 0.82 ±0.34 0.90 ±0.45
MLCIB1 1.49 ±0.70 0.96 ±0.46 0.86 ±0.41 0.99 ±0.43
MLCNB 1.29 ±0.54 0.91 ±0.42 0.90 ±0.40 1.01 ±0.42
RIPPER 1.33 ±0.65 0.92 ±0.46 0.80 ±0.42 0.90 ±0.41
CLEM-RBFN 1.11 ±0.33 0.89 ±0.29 0.84 ±0.27 1.04 ±0.40
C50-TREE 1.47 ±0.69 0.94 ±0.44 0.85 ±0.39 0.98 ±0.43
CLEM-MLP 1.22 ±0.42 0.95 ±0.37 0.93 ±0.37 1.03 ±0.40
C50-BOOST 1.51 ±0.70 0.95 ±0.45 0.88 ±0.40 0.99 ±0.44

MICROARTHROPODS 0.77 52 0.73 12,411 0.74 443 0.86 20
ACARI 0.76 ±0.17 0.71 ±0.18 0.73 ±0.15 0.83 ±0.19
COLLEMBOLAN 0.74 ±0.13 0.74 ±0.17 0.74 ±0.14 0.82 ±0.16
SH-BIODIV 0.81 ±0.03 0.75 ±0.03 0.76 ±0.04 0.91 ±0.06

SIGMEA REAL 0.61 12 0.65 22,506 0.66 209 0.69 20
MFO 0.62 ±0.37 0.67 ±0.42 0.70 ±0.50 0.69 ±0.48
MSO 0.61 ±0.44 0.62 ±0.46 0.62 ±0.43 0.69 ±0.45

SIGMEA SIMULATED 0.04 39 0.04 21,093 0.04 397 0.09 20
DISP-RATE 0.04 ±0.02 0.04 ±0.01 0.04 ±0.01 0.10 ±0.02
DISP-SEEDS 0.03 ±0.02 0.03 ±0.01 0.04 ±0.01 0.08 ±0.01

SOLAR FLARE 0.99 2 1.05 3,974 1.00 24 1.02 20
C-CLASS 0.99 ±0.31 1.03 ±0.29 1.00 ±0.33 1.01 ±0.32
M-CLASS 0.97 ±0.39 1.04 ±0.37 0.99 ±0.39 1.01 ±0.40
X-CLASS 1.01 ±0.72 1.07 ±0.69 1.02 ±0.72 1.04 ±0.72

CONTINUED ON THE NEXT PAGE . . .

Table II
CONTINUED FROM THE PREVIOUS PAGE.

DATA SET TREE RANDOM FOREST FIRE FIRE 20 RULES
TARGET ATTRIBUTES RRMSE # RRMSE # RRMSE # RRMSE #

VEGETATION 0.94 28 0.81 76,154 0.84 682 0.89 20
NUMBER-SPP 0.93 ±0.06 0.76 ±0.04 0.79 ±0.04 0.90 ±0.05
DEM 0.91 ±0.04 0.67 ±0.03 0.71 ±0.04 0.80 ±0.07
TWI 0.88 ±0.16 0.72 ±0.18 0.76 ±0.16 0.80 ±0.16
SOLAR 1.00 ±0.08 1.00 ±0.07 1.00 ±0.07 1.00 ±0.07
THINVK 0.98 ±0.09 0.94 ±0.09 0.96 ±0.09 0.97 ±0.09
THK 0.98 ±0.09 0.94 ±0.09 0.96 ±0.09 0.97 ±0.09
EFF-RAIN 0.89 ±0.06 0.67 ±0.05 0.72 ±0.05 0.82 ±0.08
MINT-JUL 0.92 ±0.03 0.71 ±0.03 0.74 ±0.03 0.82 ±0.04
MAX-FEB 0.92 ±0.04 0.68 ±0.04 0.74 ±0.06 0.83 ±0.06
GRND-DPTH 0.96 ±0.15 0.83 ±0.16 0.84 ±0.15 0.89 ±0.15
SALINITY 1.02 ±0.24 0.94 ±0.20 0.96 ±0.20 0.98 ±0.24

WATER QUALITY 0.96 5 0.90 41,543 0.94 687 0.94 20
CLAD-SP 0.99 ±0.11 0.93 ±0.11 0.96 ±0.14 0.97 ±0.12
GONG-INC 1.00 ±0.06 0.97 ±0.07 1.00 ±0.07 0.99 ±0.06
OEDO-SP 1.00 ±0.12 0.94 ±0.10 0.97 ±0.09 0.97 ±0.11
TIGE-TEN 0.95 ±0.15 0.88 ±0.14 0.93 ±0.14 0.91 ±0.14
MELO-VAR 0.98 ±0.15 0.91 ±0.14 0.95 ±0.16 0.95 ±0.14
NITZ-PAL 0.89 ±0.05 0.83 ±0.06 0.88 ±0.06 0.85 ±0.06
AUDO-CHA 0.98 ±0.13 0.95 ±0.14 0.97 ±0.13 0.97 ±0.13
ERPO-OCT 0.97 ±0.10 0.91 ±0.07 0.95 ±0.07 0.94 ±0.09
GAMM-FOSS 0.91 ±0.07 0.80 ±0.05 0.86 ±0.05 0.88 ±0.07
BAET-RHOD 0.98 ±0.09 0.90 ±0.09 0.94 ±0.09 0.95 ±0.10
HYDRO-SP 0.97 ±0.10 0.91 ±0.10 0.97 ±0.11 0.96 ±0.10
RHYA-SP 0.95 ±0.12 0.90 ±0.12 0.94 ±0.10 0.93 ±0.11
SIMU-SP 1.00 ±0.10 0.94 ±0.10 0.99 ±0.11 0.99 ±0.10
TUBI-SP 0.89 ±0.09 0.85 ±0.09 0.90 ±0.08 0.88 ±0.09

AVERAGE – TARGETS 0.92 0.79 0.80 0.85
AVERAGE – DATA SETS 0.80 30.3 0.72 31,281 0.72 483.2 0.77 20

than that of the full model. Of course, the exact values
depend on the domain, the number of target attributes, and
relations between them. But it could be expected that the
task of modeling a multi-target domain is harder than the
task of modeling a single-target domain, and therefore the
corresponding models have to be more complex.

VI. CONCLUSIONS AND FURTHER WORK

In many application areas there is a need for methods
that can learn interpretable multi-target models, i.e., models
that predict several target attributes simultaneously. Rules
are arguably one of the most interpretable model types,
and we presented a method FIRE that can learn multi-
target regression rule ensembles. We have adopted a rule
ensembles approach and generalized it to multi-target regres-
sion domains. Our implementation has a simple parameter
for limiting the number of rules in the learned model.
This enables us to trade accuracy for size (interpretability)
of learned models. We evaluated our algorithm with two
parameter values: one that limits the number of rules to
maximum 20, and one that has no size restrictions, and
compared it to regression trees and random forests. We also
investigated how the size limit affects the accuracy.

First, we evaluated FIRE on single-target domains in order
to show that our implementation of rule ensembles also

works on standard regression problems. The results show
that, depending on the number of rules limit, the accuracy
of FIRE is between the accuracies of regression trees and
random forests. However, regression trees and both versions
of FIRE generate smaller models than random forests. This
suggests that FIRE can offer accuracy comparable to that of
random forests, which are much larger.

Second and most important, we have evaluated FIRE on
multi-target domains. The results are similar to the ones
on single-target domains. Random forests and the unlimited
FIRE are more accurate than the limited FIRE and regression
trees. Again, model size of regression trees and the limited
FIRE is significantly smaller than model size of the unlimited
FIRE and random forests. Even though the difference in
size between random forests and the unlimited FIRE is not
significant, the average size of a random forest is almost 65
times larger than the average size of a FIRE model. Although
the unlimited FIRE tends to generate somewhat less accurate
models than random forest, these models are much smaller
than random forests. Therefore, we believe the unlimited
FIRE is a good choice for modeling multi-target regression
problems.

Finally, the investigation of the influence of the maximum
model size on the accuracy confirms that this parameter can
be successfully used as an accuracy for simplicity trade-

123456

CD

FIRE Max 10 terms

FIRE Max 40 terms

FIRE Max 30 terms FIRE Max 20 terms

FIRE Max 50 terms

FIRE

(a) single-target problems

123456

CD

FIRE Max 10 terms

FIRE Max 20 terms

FIRE Max 30 terms FIRE Max 40 terms

FIRE Max 50 terms

FIRE

(b) multi-target problems, per target evaluation

123456

CD

FIRE Max 10 terms

FIRE Max 20 terms

FIRE Max 30 terms FIRE Max 40 terms

FIRE Max 50 terms

FIRE

(c) multi-target problems, per data set target average evaluation

Figure 5. Average ranks diagrams of FIRE with different model size limitations for RRMSE on single-target data (a), on multi-target data evaluated on
separate targets (b), and on multi-target data evaluated on target averages within data sets (c). Better algorithms are on the right side, the ones that do
not differ significantly by the Nemenyi test (p-value =0.05) are connected with a horizontal bar. CD is the critical distance.

off setting. The results show the general trend of larger
models having better accuracy. The fact that the trend is
more evident in the multi-target domains can be attributed
to multi-target tasks being more complex and demanding
more complex models for optimal accuracy.

Let us conclude with some ideas for further work. The
original RuleFit method can also generate models that con-
sist not only of rules, but also of simple linear functions
(linear terms). We believe that the additions of linear terms
could further improve the accuracy of our method. The
experimental evaluation could also be extended by a compar-
ison to existing multi-target regression rules, i.e., predictive
clustering rules [8]. The optimal model size depends on the
domain at hand. We believe it should be possible to auto-
matically determine the optimal model size, which would be
a compromise between accuracy and interpretability.

REFERENCES

[1] D. Demšar, S. Džeroski, T. Larsen, J. Struyf, J. Axelsen,
M. B. Pedersen, and P. H. Krogh, “Using multi-objective

classification to model communities of soil microarthropods,”
Ecological Modelling, vol. 191, no. 1, pp. 131–143, 2006.

[2] H. Blockeel, “Top-down induction of first order logical
decision trees,” Ph.D. dissertation, Katholieke Universiteit
Leuven, Department of Computer Science, Leuven, Belgium,
1998.

[3] E. Suzuki, M. Gotoh, and Y. Choki, “Bloomy decision tree
for multi-objective classification,” in Proceedings of the Fifth
European Conference on Principles of Data Mining and
Knowledge Discovery, ser. LNCS, L. D. Raedt and A. Siebes,
Eds. Berlin, Germany: Springer, 2001, pp. 436–447.

[4] B. Ženko and S. Džeroski, “Learning classification rules
for multiple target attributes,” in Proceedings of the 12th
Pacific-Asia Conference on Knowledge Discovery and Data
Mining, ser. LNCS, T. Washio, E. Suzuki et al., Eds. Berlin,
Germany: Springer, 2008, pp. 454–465.

[5] R. Caruana, “Multitask learning,” Machine Learning, vol. 28,
no. 1, pp. 41–75, 1997.

[6] D. Kocev, C. Vens, J. Struyf, and S. Džeroski, “Ensembles
of multi-objective decision trees,” in Proceedings of the 18th

European Conference on Machine Learning, ser. LNCS, J. N.
Kok, J. Koronacki et al., Eds. Berlin, Germany: Springer,
2007, pp. 624–631.

[7] R. S. Michalski, “On the quasi-minimal solution of the
general covering problem,” in Proceedings of the Fifth In-
ternational Symposium on Information Processing, vol. A3,
Switching Circuits, Bled, Yugoslavia, 1969, pp. 125–128.

[8] B. Ženko, “Learning predictive clustering rules,” Ph.D. dis-
sertation, University of Ljubljana, Faculty of computer and
information science, Ljubljana, Slovenia, 2007.

[9] J. H. Friedman and B. E. Popescu, “Predictive learning via
rule ensembles,” The Annals of Applied Statistics, vol. 2,
no. 3, pp. 916–954, 2008.

[10] H. Blockeel, L. D. Raedt, and J. Ramon, “Top-down induction
of clustering trees,” in Proceedings of the 15th International
Conference on Machine Learning, J. W. Shavlik, Ed. San
Francisco, CA: Morgan Kaufmann, 1998, pp. 55–63.

[11] P. Flach and N. Lavrač, “Rule induction,” in Intelligent Data
Analysis, M. R. Berthold and D. J. Hand, Eds. Berlin,
Germany: Springer, 2003, pp. 229–267, second edition.

[12] K. Dembczyński, W. Kotłowski, and R. Słowiński, “Max-
imum likelihood rule ensembles,” in Proceedings of the
Twenty-Fifth International Conference on Machine Learning,
ser. AICPS, W. W. Cohen, A. McCallum, and S. T. Roweis,
Eds. Berlin, Germany: ACM, 2008, pp. 224–231.

[13] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996.

[14] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[15] J. H. Friedman and B. E. Popescu, “Gradient directed reg-
ularization,” Stanford University, Stanford, CA, Tech. Rep.,
2004.

[16] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[17] H. Blockeel and J. Struyf, “Efficient algorithms for decision
tree cross-validation,” Journal of Machine Learning Research,
vol. 3, pp. 621–650, 2002.

[18] C. Kampichler, S. Dzeroski, and R. Wieland, “Application
of machine learning techniques to the analysis of soil eco-
logical data bases: relationships between habitat features and
collembolan community characteristics,” Soil Biology and
Biochemistry, vol. 32, no. 2, pp. 197–209, 2000.

[19] A. Karalič and I. Bratko, “First order regression,” Machine
Learning, vol. 26, no. 2-3, pp. 147–176, 1997.

[20] S. Džeroski, A. Kobler, V. Gjorgjioski, and P. Panov, “Using
decision trees to predict forest stand height and canopy cover
from LANSAT and LIDAR data,” in Proceedings of the 20th
International Conference on Informatics for Environmental
Protection, K. Tochtermann and A. Scharl, Eds. Achen,
Germany: Shaker, 2006, pp. 125–133.

[21] D. Stojanova, “Estimating forest properties from remotely
sensed data by using machine learning,” Master’s thesis, Jožef
Stefan International Postgraduate School, Ljubljana, Slovenia,
2009.

[22] S. Džeroski, L. Todorovski, and H. Blockeel, “Relational
ranking with predictive clustering trees,” in Proceedings of
the Workshop on Active Mining (ICDM). IEEE Computer
Society, 2002, pp. 9–15.

[23] D. Demšar, M. Debeljak, C. Lavigne, and S. Džeroski,
“Modelling pollen dispersal of genetically modified oilseed
rape within the field,” in Abstracts, 90th ESA Annual Meeting.
Montreal, Canada: The Ecological Society of America, 2005,
p. 152.

[24] S. Džeroski, N. Colbach, and A. Messéan, “Analysing the
effect of field character on gene flow between oilseed rape
varieties and volunteers with regression trees,” in Proceed-
ings of the Second International Conference on Co-existence
between GM and non-GM based Agricultural Supply Chains,
A. Messéan, Ed. Montpellier, France: Agropolis Productions,
2005, pp. 207–211.

[25] D. Kocev, S. Džeroski, M. D. White, G. R. Newell, and
P. Griffioen, “Using single and multi target regression trees
and ensembles to model a compound index of vegetation
condition,” Ecological Modelling, vol. 220, no. 8, pp. 1159–
1168, 2009.

[26] S. Džeroski, D. Demšar, and J. Grbović, “Predicting chemical
parameters of river water quality from bioindicator data,”
Applied Intelligence, vol. 13, no. 1, pp. 7–17, 2000.

[27] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, pp.
1–30, 2006.

