
Automating Transformations in
Data Vault Data Warehouse Loads

Mikko PUONTI a, Timo RAITALAAKSO a,b, Timo AHO c and
Tommi MIKKONEN b

a Solita PLC, Åkerlundinkatu 11, FI-33100 Tampere, Finland, e-mail:
puonti@iki.fi, timo.raitalaakso@iki.fi

b Department of Pervasive Computing, Tampere University of Technology, PO
BOX 553, FI-33101 Tampere, Finland, e-mail: tommi.mikkonen@tut.fi
c Yle, The Finnish Broadcasting Company, Box 97, FI-00024 Yleisradio,

Finland, e-mail: timo.aho@yle.fi

Abstract. Data warehousing is a process of integrating multiple data

sources into one for, e.g., reporting purposes. An emerging modeling

technique for this is the data vault method. The use of data vault creates
many structurally similar data processing modifications in the trans-

form phase of ETL work. Is it possible to automate the creation of
transformations? Based on our study, the answer is mostly affirmative.

Data vault modeling creates certain constraints to data warehouse en-

tities. These model constraints and data vault table populating princi-
ples can be used to generate transformation code. Based on the original

relational database model and data flow metadata we can gather pop-

ulating principles. These can then be used to create general templates
for each entity. Nevertheless, we need to note that the use of data flow

metadata can be only partially automated and includes the only manual

work phases in the process. In the end we can generate the actual trans-
formation code automatically. In this paper, we carefully describe the
creation of automation procedure and analyze the practical problems

based on our experiences on PL/SQL proof of concept implementation.
To the best of our knowledge, similar has not yet been described in the

scientific literature.

Keywords. data vault, database modeling, ELT, ETL, code generation

1. Introduction

Data warehousing is a technique for integrating data from several source systems
to enable reporting and finding dependencies in the data. Data merging from
different data sources to a data warehouse is typically done in three phases: The
data is Extracted from source systems, T ransformed to the target structure, and
Loaded to a data warehouse. The order of the last two stages may vary and we call
the variants accordingly Extract-Load-Transform (ELT) or Extract-Transform-
Load (ETL). These phases are typically done in all the data warehouse modeling
types.

In the case of ELT, the two first functions form a way to bring source data

as-is to a staging area in a data warehouse. In this case, extract and load functions

use similar data structure, and the transformation is done only at the last stage

in the process. The final transformation, the final phase, is actually about loading

data from the initial staging area to data vault tables. Its implementation can be

(and often is) an ETL system of its own, and an ETL tool is used manually to

define the transformation. This is the case in data warehouses using data vault

modeling technique [5]. Data vault is a modeling technique designed to meet the

needs of enterprise data warehousing. In the original work, Linstedt gives the

following definition for it: ”The Data Vault is a detail oriented, historical tracking

and uniquely linked set of normalized tables that support one or more functional

areas of business.”[5].

Modeling is an integral part of the work in data warehousing and there are

different ways of doing this. In particular, data vault modeling has become a

popular way in designing a data warehouse because of its flexibility. When using

data vault as modeling technique there are several similar data transformations.

When adding a new data source to a data warehouse, the data model needs to

be updated. Information about attributes in the source system interface is used

when modeling the data warehouse. In addition, the transformation from a data

source to a data warehouse needs to be tuned manually.

In this paper, our research concentrates on this manual work—how it is pos-

sible to minimize or even omit the manual part? The goal is to reduce the amount

manual work needed by using model information more intensively. Based on the

data vault modeling technique, there are rules based on the structure and rules

on how the data vault entities will be populated. Based on these principal rules,

it is possible to automatically generate ETL code. This code generation needs

information about model and data flow. To enable this, a data model of system’s

metadata is created for this code generation. However, the process of creating

transformations based on the metadata of models is different than in a manual

ETL process.

As a practical contribution, we have implemented a PL/SQL proof of concept

code generator for transformations from a data source to a data warehouse using

data vault modeling. In this paper, we describe the process of automatically gen-

erating the transformations based on the metadata of data models. In addition,

we present our implementation and analyze the learnings and pitfalls based on it.

The rest of this paper is structured as follows. In Section 2, we introduce

the background of the paper. In Section 3, we present the principles of populat-

ing the data vault entities. In Section 4, we introduce data model to automate

transformation and what to automate with it. In Section 5 we provide a small

example regarding data map usage. In Section 6, we analyze the overall work and

our experiences more generally. In Section 7 possible new research topics. Finally,

in Section 8 we draw conclusions.

2. Background and Related Work

Jovanovic and Bojicic present a platform independent metamodel to store the

data warehouse model information [3]. They give several examples of doing the

conversion from a logical data model to a data vault model.

Phipps and Davis automate the data warehouse conceptual schema design

[9]. They divide data warehouse creation to five steps: pre-development activities,

architecture selection, schema creation, warehouse population, and data ware-

house maintenance. They focus on schema creation phase and automation of that,

whereas we are focusing on the next phase, warehouse population.

El Akkaoui et al, propose a model-driven development framework for ETL

processes [1]. That framework aims at automatic generation of ETL code for

several vendor specific platforms. The vendor-independent model is defined using

a platform independent design model of ETL based on business process model

notation (BPMN4ETL), ETL processes are generated based on that model.

Pankov et al share the idea of using metadata as a starting point for automat-

ing data warehouse implementation [8]. They describe metadata model which is

modelled with data vault principles. Based on that metadata they show possibil-

ities regarding how to generate ETL processes. A limitation of this approach is

that the ETL tool has to expose its functionality as an application programming

interface.

Several case tools for database modeling are available, such as Oracle SQL

Developer Data Modeler1 and ER Studio2. They use their own internal models

to store the model information. The core usage of these tools is to forward and

reverse engineer database structures. It is also possible to draw process diagrams

with these tools. Data flow may be derived from a process model, if the structure

is tied to the processes. Attributes used in process information structures may

be associated with table columns with these tools. This capability is hidden be-

hind several steps in graphical user interfaces. No code generation capabilities are

available based on this information. In this case, traditional ETL tools are used

to develop the transformations.

Data vault modeling consists of three major components. A hub has only

the business key columns for a specific entity. A link draws a many-to-many

relationship between several hubs. A satellite holds descriptive information about

the context. In addition, reference tables are related to data vault modeling.

Nevertheless, according to Lindstedt [4, 102], reference data should be separated

from other data vault tables.

Data vault modeling introduces flexibility by adding new entities to the

model. Existing entities and structures will remain and new modeling will be

added to the model. As for the tool support for doing this, while data ware-

house software with automation features exist, most of the software systems that

are suited for data vault modeling are licensed products. However, there are two

1http://www.oracle.com/technetwork/developer-tools/datamodeler/overview/
2http://www.embarcadero.com/products/er-studio

open source distributions: Quipu3 and Optimal Data Engine4Both of these use
Microsoft Visual Studio as the front-end for the development.

3. Principles for Automation

Data vault modeling yields certain rules that can be used in code generation.
Firstly, data vault entities hub and link have a surrogate key which is a one column
primary key. Secondly, a satellite primary key is constructed with the surrogate
key and load time. In addition, satellites and links have foreign key references. In
this section these rules are explained for each data vault entity: hub, link, satellite,
and reference.

Common attributes to all data vault tables Every data vault table has metadata.
This metadata is stored in attributes as listed in Table 1. Our naming convention
is to start every data vault metadata attribute with prefix DV .

Table 1. Data vault common attributes

DV ID Surrogate key

DV LOAD TIME Timestamp when the row is inserted

DV SOURCE Metadata of the source system

DV LOAD NAME Name of the transformation which inserted the row

DV RUN ID Every load batch has a unique id

3.1. Principles for a Hub

Business keys are vital to locate the business data [7]. Natural business key is a
unique identifier for business concept [2, Chapter 4]. A hub present the business
key for the business concept. If the business uses the same business key in all
steps of the business process, then all data would be linked via the hub. Unfortu-
nately, this is not usually the case, since different systems use quite often sequence
numbers for their business keys. A hub is a mapping from a business key to a
surrogate key. Surrogate key is one column primary key.

A business key may consist of several columns. A hub stores all unique busi-
ness key values and creates a unique key constraint for business key attributes.

3.2. Principles for a Link

A link is an associative entity between hubs. When two or more business keys
interact, a link is created to represent this interaction. This link is a many-to-
many relationship table between hub tables, storing hub surrogate key values.
Link table attributes are the common attributes listed in Table 1, together with
all associative hub surrogate key values, which are related to that particular link.
A link can also be used to store hierarchy information of a hub. In this case,

3http://www.datawarehousemanagement.org
4https://github.com/OptimalBI/optimal-data-engine-mssql

the link has relations to only one hub table. Every link hub surrogate key has a
foreign key reference to the related hub surrogate key attribute.

Data vault modeling allows creating more than one link between two or more
hub tables. The link structure introduces flexibility in the modeling process. When
there are changes in the real world, the corresponding modifications can be done
in the data vault model simply by creating new links.

A link table referring to another link table should not be modeled. Such a
link to link structure can be resolved by creating a link to have all hub surrogate
keys from both links. Database foreign key information is used in code generation,
which is the reason why all link to link relations is forbidden.

3.3. Principles for a Satellite Entity

A satellite is an entity which holds descriptive information of a hub or a link. It
includes other attributes than those that comform a business key for that entity.
The referring attribute to a hub or a link is a surrogate key.

We list all common satellite attributes in Table 2. Satellite tables have two
additional columns compared to a hub or a link table. Datahash is special at-
tribute, which is used for capturing changes in a satellite [6, Chapter 11.2.5].
The Datahash value is calculated from the concatenation of business key and all
satellite data attributes. There might be a need in future to have multiple active
values in a satellite, we added in every satellite record order for that purpose.

Table 2. Satellite table common attributes

DV ID Surrogate key

DV LOAD TIME Timestamp when the row is inserted

DV SOURCE Metadata of the source system

DV LOAD NAME Name of the transformation which inserted the row

DV RUN ID Every load batch has a unique id

DV DATAHASH Datahash is computed of business keys and data attributes

DV RECORD ORDER This is for multiple active satellite rows

Satellite information is subject to change over time [5]. A satellite will store
the whole history of the descriptive data. To help querying the satellite we have
created current view, which show the latest known data row for each surrogate
key. When populating the satellite table the current view can be used. New row
is added from staging table to satellite when the data in staging table differs from
data in current view, the comparison is done by comparing the datahash attribute
values in staging table and satellite current view.

There are modeling principles regarding how to split the satellite attributes
to several satellite tables [2, Chapter 21], but how the split is done is not relevant
for generating transformations to satellite tables.

Status satellite has a special meaning A status satellite tells the time intervals
when the referenced row has been active. If the staging table is a full dump from
a source system, the deleted rows can be recognized. If it is an incremental dump
for a link, information about a driving hub should be available. The driving hub
information is used to identify changed links.

3.4. Principles for a Reference

Reference data holds a list of code values with their descriptions. Typical items are

units of measure, postal codes, currencies, and so on. The code can be in several

places in a data vault, and it is not reasonable to copy the same descriptions to

several places. A reference – a different kind of entity from other major data vault

components – refers to other tables in the logical sense, but it will not have any

foreign key references in the physical model. To mitigate new transformation for

reference the reference implementation can be changed to view which is based on

a hub and a satellite table. Then the reference transformation is splitted to hub

and satellite transformations, there is no need to have different transformation

rules for the reference.

3.5. Transformation

A transformation phase in ELT is in itself a kind of a transformation of its own,

this time of type ETL. One transformation between staging and data vault table

is extracting rows from the source table, transforming them, and then inserting

the chosen columns of the rows to the target table. All of these steps may be done

in a single insert into select statement.

A transformation is a data flow element at entity level. When a data flow is

coming from a staging table to a data vault structure, each source entity - target

entity constructs a transformation.

Attributes in a Transformation A transformation at the attribute level is con-

structed using mappings. For a normal attribute, such mapping is simply a rela-

tion from a source attribute to a target attribute for raw data vault transforma-

tions. There should not be any attribute level transformations in the mappings.

No data cleansing is to be done in this phase of data warehouse population. Con-

sequently, both source and target attributes in a mapping should have matching

data types. The business keys in hubs are used for consolidation. This is why it

is suggested to trim business key columns [6, Chapter 11]. This could lead to a

need for technical hubs that store different presentations of the business keys. The

original presentation might be stored in a satellite as a normal attribute. This

way, dirty data in source systems could lead to a need for misusing multi-valued

satellite implementation. For the hub transformations, the whole business key

should be mapped. In other words, if the hub has several columns in its business

key, there should be a mapping for all of its key columns in each transformation

that will be populating the hub. The attributes are mapped from a source stag-

ing table columns to target data vault entity columns. It is equally important to

map the access paths for columns used in foreign keys. Surrogate key columns are

used in foreign keys in the data vault. To define a transformation for a satellite

surrogate key, a data transformation from the same staging table defines which

business key columns are used to look up or construct the surrogate key. The

same rule applies to link referential hub surrogate key columns.

Defining Transformations for a Hierarchy Parent-child relationships in the
model introduce a hierarchy link in the data vault. Examples of such are product
and account hierarchies. In these cases, several transformations from the same
staging table to the same hub exist, and at least one to a link that defines the
hierarchy. Therefore, transformation naming needs more information than just
source entity and target entity names.

4. Automate Transformation

An agile approach to develop transformations is by slicing the model. One way
to divide work to get smaller deliverable is to develop by source system dataset.

Current ETL software have lack of parallel development. The development
design happens in the same server and developers have to communicate that they
do not change the same ETL object at the same time. Development with au-
tomating transformations can be separated. Each developer has their own design
environment. A developer creates the implementation of transformations and the
implementation is shared among other developers via version control system.

4.1. Information Model for Automated Transformation – Data Map

For automating transformations, we need information of source structure and tar-
get structure. The power of the data model in Figure 1 is that it represents model
information and mapping between different models. Automating the transforma-
tions is based on the structure (model) and data flow information.

Structure information is in Figure 1 with green color. An entity is in a rela-
tional database table or view, but it can be something else if the data warehouse
is not in a relational database. An attribute is column information, each entity
has several attributes. Reference is foreign key relations at attribute level.

Data flow information between entities is a transformation. In the model, a
transformation has a source entity and a target entity. A mapping is transfor-
mation information at attribute level. A mapping information is entered for each
attribute for a target entity. Figure 1 shows the data flow information at violet
color.

Populating the Structure The data model may be populated from a existing re-
lational database metadata. While populating an entity and querying the table
information from a database metadata also the reference and attribute level in-
formation may be queried. Based on the found information the model may be
populated. An entity may become from a table or a view. A staging entity may
be implemented as a view. The rules of the data vault structure may be used to
populate the structure part. The entity type may be decided based on the rules.
Also if there is a satellite in the model there has to be a hub or a link that the
satellite belongs to. Similarly if there is a link there should be at least two hubs
in the model that the link is referring to. So if the model is populated from a
database metadata the model population may be started from satellites. Traverse
through foreign key definitions and populate the entity, attribute and reference
information on the way.

Figure 1. The data map model

Populating the Data Flow The transformation level is chosen first. This means
choosing from which staging entity to a data vault entity there will be a trans-
formation. Similar rules like populating the structure part need to be used. If
there is a transformation from a staging table to a satellite, there has to be a
transformation from the same staging table to a dependent hub or link. The same
rule applies to a link transformations. All dependent hubs should have a transfor-
mation from the same staging table that is transforming the link. Mapping at an
attribute level may be suggested based on the similar naming of the attributes.
Another way to suggest the mapping information is using the attribute order of
a source entity. Also similar data types should be checked to avoid implicit data
type conversions. After the model is enriched with several mappings the mapping
table constructs a dictionary, which is used to suggests the mappings in other
transformations.

4.2. Generating Transformations

We have created a data map data model capable of automating transformation
generation. Data map enables more than just transformation generation.

Data map model can be used as a source to generate create table clauses.
It can be used as a primary definition place to define a data warehouse data
model. This would support data first development strategy. We have currently
chosen the model first development strategy where the data warehouse model is
drawn first with a suitable tool for the job. Those tools support the features of
the environments that the data vault model will be installed to.

As the data vault is the place to store a history of data changes the latest
knowledge of the data may be published through views that publish a latest known
rows, we call these views current view. Current views is possible to generate based
on structure information and rule that the latest known row will be displayed. The
history is stored mainly in satellites. For a satellite the current view publishes the
latest rows for each surrogate key. These satellite current views are used in data
map insert views generated in the next steps. Also a relationship may be changed

in source systems. So there is a need to make links disapear in certain points in
time. This is done with a status satellite for a link. In link current view a link
rows that are not marked as deleted in the latest status satellite are published.
A link without a status satellite may be published as is as a link current view.
The view is created for future changes in the model. A link status satellite may
be created afterwards for the link. The view may be changed to take the status
satellite into account. By creating such a link current view the interface to the
data vault for user stays similar even when future changes appear. Point in time
views are somewhat similar to current views. A point in time table is a query
assistant table [4, Chapter 7] . They publish the transaction time aspect history
of the tables. A point in time view is showing the hub surrogate key and satellite
transformation times related to that hub for every snapshot date chosen to point
in time view. This generation needs only the structure part of the data map.

Also basic publishing views may be generated based on the structure. A link
publishing view could join the used hubs and publish the used business keys in a
view. A current satellite may be published together with the business keys in the
related hub. Also supernova views may be generated [10]. Supernova modeling
technique generates views on top data vault modeled structure and reveals data
to the reporting layer.

A ETL transformation could be done by simply with a single insert into
clause. That could be generated from data map. We have chosen to split the single
SQL statement into a view and a function. These insert views and functions are
generated for each ETL transformation. The split is done for better testability.

The insert view publishes the new rows from the staging table compared with
the latest rows in the data vault. The insert view is using earlier generated current
views for satellites. For hubs and links the comparison is made straight between
the staging entity and target table. The insert view publishes distinct rows from
the source.

The insert functions include the insert into select clauses. Insert is into the
target table and select part is using the generated insert views. The function is
returning the number of inserted rows. Inside the generated function it is possible
to do error handling code. Unique key constraint violation can be handled in the
functions if there happens to become several runs of the ETL transformations in
parallel.

How a data vault 2.0 style surrogate key hash is generated may be interpreted
from the data map. Several staging tables may be used to populate the same
hub. The used order of the columns in hash generation should be taken from the
order of the target hub attribute ordering. The access path to the ordering of the
staging table columns goes through the mapping table. Data hash generation is
based similarly to the target table column ordering than the surrogate key hash
generation.

4.3. Developing with Automated Transformation

Here is a list of steps when developing with automated transformation.

1. Model and create the new data warehouse entities with case tool
2. Populate structure information from database metadata

3. Populate data flow information
4. Generate objects based structure and data flow information
5. Testing in development environment
6. Create delivery scripts from development to other environments like test

and production

First step is to make the data warehouse data model changes with a case
tool. When the data model is modeled, it will be created with ddl-statements to
a relational database. The end result of the modeling will be ddl-statements and
model information in the relational database.

Structure is populated from database metadata of all entities which structure
information is needed in the implementation. Structure population use structure
rules and populate all dependant entities. When populating link or satellite struc-
ture information check is the dependent objects structure information populated
and populate those if needed. In Listing 1 the structure population is on row 1.

Listing 1 Pseudocode commands for automating transformations

1 p o p u l a t e e n t i t y (’< i n s e r t e n t i t y here > ’) ;

2 popu la t e t rans f o rmat i on (’< source tab le > ’ , ’< t a r g e t tab le > ’) ;
3 c r e a t e c u r r e n t v i e w s () ;

4 c r e a t e i n s e r t v i e w s a n d f u n c t i o n s () ;

Data flow information population needs manual acceptance. Data flow infor-
mation is populated at entity and attribute level. Entity level data flow informa-
tion is a transformation and it can be given with command like in Listing 1 at
row 2. transformation information need information on source table and target
table. Mapping information population can be suggested based on either attribute
names or position of the attributes in a source table.

Automating work is generating the deliverable without human work. After the
structure and data flow information is in the data map model all transformations
can be generated. In generation one command generates all objects, compared
with manual work where each object has to done manually. Generation can also
be done one by one by specifying what an object should generate.

In parallel development testing has to be part of the development. Test cases
are stored in version control and after each development cycle a developer will
execute the test cases. We stress the importance of local testing in parallel devel-
opment.

After testing in the local development is passed then the implementation is
locally ready. In parallel development there has to be version control in use and
release management practices. Create the delivery script from local environment
by following the release management practices.

5. Data Map Usage Example

Next, we provide a small example, where data from several source systems is
stored in a data vault data warehouse. There are three different source systems –

customer relations management (CRM), supply chain management (SCM), and
product life cycle management (PLM) systems. The data model of this example
is given in Figure 2. Tables are classified by using colors; white tables are staging
tables, and blue, red, and yellow links represent data vault tables, links, and
satellites, respectively.

Figure 2. Customer - Supplier - Product example

CRM Populate Structure The source is STG CRM CUSTOMER and targets are
CUSTOMER H and CUSTOMER S. We populate the structure information with the
following commands. After the structure information population we create the
current view for the satellite.

1 /∗ p o p u l a t e s t r u c t u r e ∗/
2 p o p u l a t e e n t i t y (’STG CRM CUSTOMER’) ;
3 p o p u l a t e e n t i t y (’CUSTOMER S ’) ;
4 /∗ c r e a t e current v iews f o r s a t e l l i t e s ∗/
5 c r e a t e c u r r v i e w s ;

CRM Populate Data Flow Populating data flow information for CRM can be
done with one command.

1 popu la t e t rans f o rmat i on (’STG CRM CUSTOMER’ , ’CUSTOMER S ’) ;

Based on the model rules, transformations from STG CRM CUSTOMER to
CUSTOMER S and CUSTOMER H are created. In addition, the mapping for surrogate
key attribute is populated for these transformations.

For transformation attribute level population, data map suggests popu-
lation code. Based on similar naming, the CUSTOMER H.CUSTOMER NBR is sug-

gested correctly. CUSTOMER ADDRESS needs to be chosen to be mapped to
CUSTOMER S.DELIVERY ADDRESS. Missing attribute mappings for populated entity
level transformations may be queried from the data map.

Code generation for insert views and functions is possible after the data flow
is populated into the data map. Insert views and functions are generated for both
transformations from STG CRM CUSTOMER to CUSTOMER S and CUSTOMER H.

PLM Populate Structure To populate PLM entities use the following commands.

1 p o p u l a t e e n t i t y (’STG PLM PRODUCT ’) ;
2 p o p u l a t e e n t i t y (’PRODUCT S ’) ;
3 p o p u l a t e e n t i t y (’PRODUCTHIE L ’) ;

The dependant PRODUCT H is populated on row 2 based on model rules when
PRODUCT S is populated. The link PRODUCTHIE L population is satisfied with the
earlier population of the hub because the row 2 populate the hub. If the order in
populating script would be different between PRODUCT S and PRODUCTHIE L the
hub PRODUCT H would be populated in that entity which is executed first.

Based on the populated data map structure part, a PRODUCT SC current view
for the satellite may be generated.

PLM Populate Data Flow Transformations from STG PLM PRODUCT to PRODUCT H,
PRODUCT S and PRODUCTHIERARCHY L will be generated. There will be two trans-
formations to both PRODUCT H and PRODUCT S. One pair for staging table included
and deliverable columns.

1 popu la t e t rans f o rmat i on (’STG PLM PRODUCT ’ , ’PRODUCTHIE L ’) ;
2 popu la t e t rans f o rmat i on (’STG PLM PRODUCT ’ , ’PRODUCT S ’) ;
3 popu la t e t rans f o rmat i on (’STG PLM PRODUCT ’ , ’PRODUCT S ’) ;

Row 1 generates two transformations to PRODUCT H and links the surrogate key
mapping for PRODUCTHIE L attribute to foreign key reference.

In row 2 there already is a hub transformation for PRODUCT H from the same
STG PLM PRODUCT table. The surrogate key reference mapping cannot be done
automatically. From data map, it is possible to create suggestions that there are
two candidate hub transformations available for this satellite transformation. The
user may choose the hub transformation that is used in deliverable part of the
transformation. Based on that the user maps the attribute level mapping from
DELIVARABLE NAME to PRODUCT NAME.

Row 3 will generate a satellite transformation for the included name mapping.
Also here the surrogate key mapping needs to be chosen and the INCLUDED NAME

to PRODUCT NAME need to be mapped at attribute level.
The mapping of data map table is now populated for STG PLM PRODUCT source

entity transformations, which is visualized in Table 3.

SCM Populate Structure SCM entities are populated with commands.

1 p o p u l a t e e n t i t y (’STG SCM ORDER ’) ;
2 p o p u l a t e e n t i t y (’ORDER S ’) ;

Table 3. Mapping table contents for STG PLM PRODUCT source entity transformations

TR TARGETENTITY TARGETATTRIB SOURCEATTRIB DVIDTR

PPD4 PRODUCT H PRODUCT CODE DELIVARABLE PCODE

PPD5 PRODUCT H PRODUCT CODE INCLUDED PCODE

PPL3 PRODUCTHIE L DV ID PROD DELI PPD4

PPL3 PRODUCTHIE L DV ID PROD INCL PPD5

PPS6 PRODUCT S DV ID PPD4

PPS6 PRODUCT S PRODUCT NAME DELIVARABLE NAME

PPS7 PRODUCT S DV ID PPD5

PPS7 PRODUCT S PRODUCT NAME INCLUDED NAME

Entity ORDER L is populated based on the model rules. If the previous CRM and
SCM parts are already in the data map model, the CUSTOMER H and PRODUCT H

entities are populated already into the model. If the SCM part is developed pri-
vately without first populating other parts, also CUSTOMER H and PRODUCT H enti-
ties are populated. This way it is possible to develop transformations in parallel.
Now, current views for the link and the satellite are ready to be generated.

SCM Populate Data Flow Transformations from STG SCM ORDER to CUSTOMER H,

SUPPLIER H, PRODUCT H, ORDER L and ORDER S will be created with one com-
mand.

1 popu la t e t rans f o rmat i on (’STG SCM ORDER ’ , ’ORDER S ’) ;

All other attributes except CUSTOMER ADDRESS match with the naming so
data map suggest the mappings. If the CRM part is already stored in the
mapping table, also the mapping from STG SCM ORDER.CUSTOMER ADDRESS to
ORDER S.DELIVERY ADDRESS may be suggested. This is based on the previous us-
age of similar naming in STG CRM CUSTOMER to CUSTOMER S transformation. Arti-
facts for all five transformations are now ready to be generated.
SUPPLIER H has two column business key. If the hash primary keys are used, the
column ordering is taken from the order of the hub column order. Even thou the
ordering of the columns is different in the staging table.

6. Discussion

In this paper we show how to generate code for ELT transformations from a stag-
ing table to a data vault table. This is enabled by the presented data map, re-
sulting from the introduced model for storing structure and dataflow information.
The power of the data map is in using both structure and data flow information
instead of relying to only one of them. It is possible to make also changes by
using data map, although this is not its initial purpose. Instead, there are various
case tools available for managing the structural information. The tools also en-
able structural changes in a flexible fashion. Moreover, such tools can also store
data flow information. Nevertheless, the data flow information is only presented
graphically, and it is not possible to extract out of the tool easily in a similar way
as with our solution data model.

In addition to the above tools, there are ETL tools that are intended for
transformations. Such ETL tools include information similar to our data map.

These ETL tools often introduce a vendor lock-in situation, and work done using
one tool is not modifiable with other tools. Consequently, internal models cannot
be exported from currently available tools. Nevertheless, there are some ways to
tackle the vendor lock-in. For example, [1] provides BPMN4ETL design model
for ETL processes which allows transporting between several technologies. In
BPMN4ETL a ETL process is designed manually, we are creating transformations
based on data vault principles. In theory, BPMN4ETL could be generated based
on data map model information.

Even if data map could be developed in data first fashion, we chose to use
model first approach. Model first approach create data warehouse structure which
is more timeless than data model created based on source systems models. These
strategies have different ways regarding how the data map is populated. The
structure information in data maps enables generating statements that create ta-
bles for a data warehouse database model, which is very convenient when develop
in data first fashion.

It is worth noting that the staging table columns may include null values,
which are then populated to hubs and satellites. Initially, all values are unknown
as there are no rows in the target model. In case of satellite tables, null values
override possible previously known values, whereas in hubs null values should
actually be stored in a data vault. There is also a common usage pattern to replace
nulls with some fixed characters, like −1 for an example. However, this character
is then not available for any other use. We have chosen to allow null values as a
business key and tie that to a hash binary that is not produced from actual data.
In this case, the hash of null value is defined to be also null.

As described earlier, it is possible to generate the transformations by using
both the existing data warehouse data and data flow information. At the moment,
we generate the following items based on data map data:

• data warehouse create table statements,
• current views for satellites,
• current views for links,
• insert views for all data vault tables and
• transformation functions which use insert view and have error handling for

parallelizing the ETL loads.

In addition, we can also generate other interesting structures from on the data
map. Most of the ETL tools can read XML formatted transformation specifi-
cations. We can generate the specifications with data map information in XML
format. This way we can actually execute the transformations with ready ETL
tools.

Data flow information includes data lineage information which can be pre-
sented graphically with different tools, like DOT5 language.

ETL has been historically based on batch load operations. Nevertheless, there
is an ongoing trend towards online processing, which requires streaming the data.
In this case, we do not have separate extract or loading phases in ETL, but the
whole process is about transformation. Consequently, the data map approach is
readily available for streaming transformation generation as well.

5http://www.graphviz.org/doc/info/lang.html

Finally, it is important to consider the tradeoff between manual work and
work needed for automating the tasks. Obviously, the automation effort should be
placed on development steps that require a lot of manual work. Nevertheless, au-
tomation also introduces other benefits. The resulting code systematically similar
for all generated objects. The coded objects are therefore often easier to maintain,
even if manual work is required.

7. Future Work

Generating data transformations out of a data vault will be the next long-term
goal of this work. The first step is to implement an inverse transformation of
a staging interface, so the data vault model may be published with a similar
interface as is used when storing the data.

As described and discussed in this article, transforming data to a data vault
structure splits the entities to smaller groups of columns. This way a single exe-
cutable transformation takes place between a staging table and a data vault table.
Mappings between source and target columns are stored in data map data model,
with information of access paths to resolve surrogate key values in foreign keys.
The introduced data map data model in this article supports the table splitting
transformation. When getting data out of the data vault, the entities are put to-
gether. Such join transformations would consist of several data vault tables as the
input. The data map model described in this paper cannot store such information.
The model needs some minor changes to accomplish these requirements.

8. Conclusion

In data warehousing, data vault modeling is widely used methodology. The data
is divided into four different entities, which are hub, link, satellite, and reference.
A data warehouse that is modeled using data vault modeling technique can be
flexibly modified if the source systems change. As a cost of the flexibility, we have
significantly increased the amount of data load operations and transformations,
which requires reducing the amount of manual work involved in these phases.

Fortunately, the manual work for the data transformation development can
be mitigated. We note that data vault methodology gives certain principles re-
garding how the different entities should be populated. By using these principles,
the metadata of data models, and data flow information it is possible to semi-
automatically generate the actual data transformations. To support this, in this
paper we have introduced a metadata model which allows the transformations
code generation.

In our approach, the amount of needed manual work is reduced but not
completely eliminated. Nevertheless, even for the manual work phase, with data
flow information we can give good proposals based on the data map metadata.
As there are several exceptions which are easy for human to recognize to instruct
to a machine, the proposed data flow information needs at times to be accepted
by a human.

Using data model information in generating data transformations introduces
several advantages. By reducing manual work, we also reduce the possibilities
for human errors. Transformations can also be generated as large sets, whereas
manually implemented transformations have to be done one by one. Furthermore,
transformations generated from data map are readily available for commercial
production environments.

Acknowledgements

The authors would like to express deep gratitude to Janne Pirkkanen for his en-
courage to think differently, he was the person who have inaugurate the systematic
way of doing data warehousing.

The work was financially supported by TEKES (Finnish Funding Agency for
Innovation) DIGILE Need for Speed program. We would also like to thank Solita
for the possibility to do this research.

References

[1] Zineb El Akkaoui, Esteban Zimànyi, Jose-Norberto Mazón, and Juan Trujillo.
A model-driven framework for etl process development. In Proceedings of the
ACM 14th international workshop on Data Warehousing and OLAP, pages
45–52. ACM, 2011.

[2] Hans Hultgren. Modeling the Agile Data Warehouse with Data Vault. New
Hamilton, 2012.

[3] Vladan Jovanovic and Ivan Bojicic. Conceptual data vault model. In SAIS
Conference, Atlanta, Georgia: March, volume 23, pages 1–6, 2012.

[4] Dan Lindstedt and Kent Graziano. Super Charge Your Data Warehouse:
Invaluable Data Modeling Rules to Implement Your Data Vault. CreateSpace,
2011.

[5] Dan Linstedt. Data vault series 1–data vault overview. The Data Adminis-
tration Newsletter, 2002.

[6] Dan Linstedt and Michael Olschimke. Building a Scalable Data Warehouse
with Data Vault 2.0: Implementation Guide for Microsoft SQL Server 2014.
Morgan Kaufmann, 2015.

[7] Dan Linstedt, Kent Graziano, and Hans Hultgren. The new business super-
model, the business of data vault modeling. Lulu. com, 2008.

[8] Ivan Pankov, Pavel Saratchev, Filip Filchev, and Paul Fatacean. Towards a
generic metadata warehouse.

[9] Cassandra Phipps and Karen C Davis. Automating data warehouse concep-
tual schema design and evaluation. In DMDW, volume 2, pages 2–2. Citeseer,
2002.

[10] Rick F. van der Lans. Data Vault and Data Virtualization:
Double Agility, March 2015 (accessed 4 january 2016). URL
https://www.cisco.com/web/services/enterprise-it-services

/data-virtualization/documents/whitepaper-cisco-datavaul.pdf.

